Conditionally complete linear order structure on ℕ
#
In this file we
- define a
conditionally_complete_linear_order_bot
structure onℕ
; - define a
complete_linear_order
structure onenat
; - prove a few lemmas about
supr
/infi
/set.Union
/set.Inter
and natural numbers.
@[protected, instance]
This instance is necessary, otherwise the lattice operations would be derived via conditionally_complete_linear_order_bot and marked as noncomputable.
Equations
@[protected, instance]
Equations
- nat.conditionally_complete_linear_order_bot = {sup := lattice.sup lattice_of_linear_order, le := lattice.le lattice_of_linear_order, lt := lattice.lt lattice_of_linear_order, le_refl := nat.conditionally_complete_linear_order_bot._proof_1, le_trans := nat.conditionally_complete_linear_order_bot._proof_2, lt_iff_le_not_le := nat.conditionally_complete_linear_order_bot._proof_3, le_antisymm := nat.conditionally_complete_linear_order_bot._proof_4, le_sup_left := nat.conditionally_complete_linear_order_bot._proof_5, le_sup_right := nat.conditionally_complete_linear_order_bot._proof_6, sup_le := nat.conditionally_complete_linear_order_bot._proof_7, inf := lattice.inf lattice_of_linear_order, inf_le_left := nat.conditionally_complete_linear_order_bot._proof_8, inf_le_right := nat.conditionally_complete_linear_order_bot._proof_9, le_inf := nat.conditionally_complete_linear_order_bot._proof_10, Sup := Sup nat.has_Sup, Inf := Inf nat.has_Inf, le_cSup := nat.conditionally_complete_linear_order_bot._proof_11, cSup_le := nat.conditionally_complete_linear_order_bot._proof_12, cInf_le := nat.conditionally_complete_linear_order_bot._proof_13, le_cInf := nat.conditionally_complete_linear_order_bot._proof_14, le_total := nat.conditionally_complete_linear_order_bot._proof_15, decidable_le := linear_order.decidable_le infer_instance, decidable_eq := linear_order.decidable_eq infer_instance, decidable_lt := linear_order.decidable_lt infer_instance, max := max infer_instance, max_def := nat.conditionally_complete_linear_order_bot._proof_16, min := min infer_instance, min_def := nat.conditionally_complete_linear_order_bot._proof_17, bot := order_bot.bot infer_instance, bot_le := nat.conditionally_complete_linear_order_bot._proof_18, cSup_empty := nat.conditionally_complete_linear_order_bot._proof_19}
@[protected, instance]
Equations
- enat.complete_linear_order = {sup := complete_lattice.sup enat.with_top_order_iso.symm.to_galois_insertion.lift_complete_lattice, le := linear_order.le enat.linear_order, lt := linear_order.lt enat.linear_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := enat.complete_linear_order._proof_1, le_sup_right := enat.complete_linear_order._proof_2, sup_le := enat.complete_linear_order._proof_3, inf := complete_lattice.inf enat.with_top_order_iso.symm.to_galois_insertion.lift_complete_lattice, inf_le_left := enat.complete_linear_order._proof_4, inf_le_right := enat.complete_linear_order._proof_5, le_inf := enat.complete_linear_order._proof_6, Sup := complete_lattice.Sup enat.with_top_order_iso.symm.to_galois_insertion.lift_complete_lattice, le_Sup := enat.complete_linear_order._proof_7, Sup_le := enat.complete_linear_order._proof_8, Inf := complete_lattice.Inf enat.with_top_order_iso.symm.to_galois_insertion.lift_complete_lattice, Inf_le := enat.complete_linear_order._proof_9, le_Inf := enat.complete_linear_order._proof_10, top := complete_lattice.top enat.with_top_order_iso.symm.to_galois_insertion.lift_complete_lattice, bot := complete_lattice.bot enat.with_top_order_iso.symm.to_galois_insertion.lift_complete_lattice, le_top := enat.complete_linear_order._proof_11, bot_le := enat.complete_linear_order._proof_12, le_total := _, decidable_le := linear_order.decidable_le enat.linear_order, decidable_eq := linear_order.decidable_eq enat.linear_order, decidable_lt := linear_order.decidable_lt enat.linear_order, max := max enat.linear_order, max_def := _, min := min enat.linear_order, min_def := _}