- done : Π (α : Type), ℕ → α → parse_result α
- fail : Π (α : Type), ℕ → dlist string → parse_result α
The parser monad. If you are familiar with the Parsec library in Haskell, you will understand this.
Equations
- parser α = (char_buffer → ℕ → parse_result α)
Equations
- p.bind f = λ (input : char_buffer) (pos : ℕ), parser.bind._match_1 f input (p input pos)
- parser.bind._match_1 f input (parse_result.fail pos expected) = parse_result.fail pos expected
- parser.bind._match_1 f input (parse_result.done pos a) = f a input pos
Equations
- parser.pure a = λ (input : char_buffer) (pos : ℕ), parse_result.done pos a
Equations
- parser.fail msg = λ (_x : char_buffer) (pos : ℕ), parse_result.fail pos (dlist.singleton msg)
Equations
Equations
- parser.failure = λ (_x : char_buffer) (pos : ℕ), parse_result.fail pos dlist.empty
Equations
- p.orelse q = λ (input : char_buffer) (pos : ℕ), parser.orelse._match_1 q input pos (p input pos)
- parser.orelse._match_1 q input pos (parse_result.fail pos₁ expected₁) = ite (pos₁ ≠ pos) (parse_result.fail pos₁ expected₁) (parser.orelse._match_2 pos₁ expected₁ (q input pos))
- parser.orelse._match_1 q input pos (parse_result.done pos_1 result) = parse_result.done pos_1 result
- parser.orelse._match_2 pos₁ expected₁ (parse_result.fail pos₂ expected₂) = ite (pos₁ < pos₂) (parse_result.fail pos₁ expected₁) (ite (pos₂ < pos₁) (parse_result.fail pos₂ expected₂) (parse_result.fail pos₁ (expected₁ ++ expected₂)))
- parser.orelse._match_2 pos₁ expected₁ (parse_result.done pos result) = parse_result.done pos result
Equations
- parser.alternative = {to_applicative := {to_functor := {map := λ (_x _x_1 : Type) (x : _x → _x_1) (y : parser _x), pure x <*> y, map_const := λ (α β : Type), (λ (x : β → α) (y : parser β), pure x <*> y) ∘ function.const β}, to_has_pure := applicative.to_has_pure monad.to_applicative, to_has_seq := applicative.to_has_seq monad.to_applicative, to_has_seq_left := {seq_left := λ (α β : Type) (a : parser α) (b : parser β), (λ (_x _x_1 : Type) (x : _x → _x_1) (y : parser _x), pure x <*> y) α (β → α) (function.const β) a <*> b}, to_has_seq_right := {seq_right := λ (α β : Type) (a : parser α) (b : parser β), (λ (_x _x_1 : Type) (x : _x → _x_1) (y : parser _x), pure x <*> y) α (β → β) (function.const α id) a <*> b}}, to_has_orelse := {orelse := parser.orelse}, failure := parser.failure}
Equations
Overrides the expected token name, and does not consume input on failure.
Equations
- parser.decorate_errors msgs p = λ (input : char_buffer) (pos : ℕ), parser.decorate_errors._match_1 msgs pos (p input pos)
- parser.decorate_errors._match_1 msgs pos (parse_result.fail _x expected) = parse_result.fail pos (dlist.lazy_of_list (λ («_» : unit), msgs ()))
- parser.decorate_errors._match_1 msgs pos (parse_result.done pos_1 result) = parse_result.done pos_1 result
Overrides the expected token name, and does not consume input on failure.
Equations
- parser.decorate_error msg p = parser.decorate_errors (λ («_» : unit), [msg ()]) p
Matches a single character. Fails only if there is no more input.
Equations
- parser.any_char = λ (input : char_buffer) (pos : ℕ), dite (pos < buffer.size input) (λ (h : pos < buffer.size input), let c : char := buffer.read input ⟨pos, h⟩ in parse_result.done (pos + 1) c) (λ (h : ¬pos < buffer.size input), parse_result.fail pos dlist.empty)
Matches a single character satisfying the given predicate.
Equations
- parser.sat p = λ (input : char_buffer) (pos : ℕ), dite (pos < buffer.size input) (λ (h : pos < buffer.size input), let c : char := buffer.read input ⟨pos, h⟩ in ite (p c) (parse_result.done (pos + 1) c) (parse_result.fail pos dlist.empty)) (λ (h : ¬pos < buffer.size input), parse_result.fail pos dlist.empty)
Matches the given character.
Equations
- parser.ch c = parser.decorate_error (λ («_» : unit), c.to_string) (parser.sat (λ (_x : char), _x = c) >> parser.eps)
Matches a whole char_buffer. Does not consume input in case of failure.
Equations
- parser.char_buf s = parser.decorate_error (λ («_» : unit), buffer.to_string s) (mmap' parser.ch (buffer.to_list s))
Matches one out of a list of characters.
Equations
- parser.one_of cs = parser.decorate_errors (λ («_» : unit), cs >>= λ (c : char), return c.to_string) (parser.sat (λ (_x : char), _x ∈ cs))
Equations
- parser.one_of' cs = parser.one_of cs >> parser.eps
Matches a string. Does not consume input in case of failure.
Equations
- parser.str s = parser.decorate_error (λ («_» : unit), s) (mmap' parser.ch s.to_list)
Number of remaining input characters.
Equations
- parser.remaining = λ (input : char_buffer) (pos : ℕ), parse_result.done pos (buffer.size input - pos)
Matches the end of the input.
Equations
- parser.eof = parser.decorate_error (λ («_» : unit), "
") (parser.remaining >>= λ (rem : ℕ), guard (rem = 0))
Equations
- parser.foldr_core f p b (reps + 1) = ((p >>= λ (x : α), parser.foldr_core f p b reps >>= λ (xs : β), return (f x xs)) <|> return b)
- parser.foldr_core f p b 0 = failure
Matches zero or more occurrences of p
, and folds the result.
Equations
- parser.foldr f p b = λ (input : char_buffer) (pos : ℕ), parser.foldr_core f p b (buffer.size input - pos + 1) input pos
Equations
- parser.foldl_core f a p (reps + 1) = ((p >>= λ (x : β), parser.foldl_core f (f a x) p reps) <|> return a)
- parser.foldl_core f a p 0 = failure
Matches zero or more occurrences of p
, and folds the result.
Equations
- parser.foldl f a p = λ (input : char_buffer) (pos : ℕ), parser.foldl_core f a p (buffer.size input - pos + 1) input pos
Matches zero or more occurrences of p
.
Equations
Matches zero or more occurrences of p
.
Equations
- p.many' = p.many >> parser.eps
Matches one or more occurences of the char parser p
and implodes them into a string.
Equations
Equations
- parser.fix_core F (max_depth + 1) = F (parser.fix_core F max_depth)
- parser.fix_core F 0 = failure
Matches a digit (0-9).
Equations
- parser.digit = parser.decorate_error (λ («_» : unit), "
") (parser.sat (λ (c : char), '0' ≤ c ∧ c ≤ '9') >>= λ (c : char), pure (c.to_nat - '0'.to_nat))
Matches a natural number. Large numbers may cause performance issues, so don't run this parser on untrusted input.
Equations
- parser.nat = parser.decorate_error (λ («_» : unit), "
") (parser.digit.many1 >>= λ (digits : list ℕ), pure (list.foldr (λ (digit : ℕ) (_x : ℕ × ℕ), parser.nat._match_1 digit _x) (0, 1) digits).fst) - parser.nat._match_1 digit (sum, magnitude) = (sum + digit * magnitude, magnitude * 10)
Fixpoint combinator satisfying fix F = F (fix F)
.
Equations
- parser.fix F = λ (input : char_buffer) (pos : ℕ), parser.fix_core F (buffer.size input - pos + 1) input pos
Equations
- parser.mk_error_msg input pos expected = let left_ctx : buffer char := (buffer.take input pos).take_right 10, right_ctx : buffer char := (buffer.drop input pos).take 10 in left_ctx.map make_monospaced ++ right_ctx.map make_monospaced ++ "\n".to_char_buffer ++ left_ctx.map (λ (_x : char), ' ') ++ "^\n".to_char_buffer ++ "\n".to_char_buffer ++ "expected: ".to_char_buffer ++ (" | ".intercalate expected.to_list).to_char_buffer ++ "\n".to_char_buffer
Runs a parser on the given input. The parser needs to match the complete input.
Equations
- p.run input = parser.run._match_1 input ((p <* parser.eof) input 0)
- parser.run._match_1 input (parse_result.fail pos expected) = sum.inl (buffer.to_string (parser.mk_error_msg input pos expected))
- parser.run._match_1 input (parse_result.done pos res) = sum.inr res
Runs a parser on the given input. The parser needs to match the complete input.
Equations
- p.run_string input = p.run input.to_char_buffer