theorem
question_one_a_true
(X Y Z : Type)
(f : X → Y)
(g : Y → Z) :
function.injective (g ∘ f) → function.injective f
Note: this declaration is incomplete and uses sorry
.
theorem
question_one_b_true
(X Y Z : Type)
(f : X → Y)
(g : Y → Z) :
function.injective (g ∘ f) → function.injective g
Note: this declaration is incomplete and uses sorry
.
theorem
question_one_c_true
(X Y Z : Type)
(f : X → Y)
(g : Y → Z) :
function.surjective (g ∘ f) → function.surjective f
Note: this declaration is incomplete and uses sorry
.
theorem
question_one_d_true
(X Y Z : Type)
(f : X → Y)
(g : Y → Z) :
function.surjective (g ∘ f) → function.surjective g
Note: this declaration is incomplete and uses sorry
.
theorem
exists_bijection_iff_has_two_sided_inverse
(X Y : Type) :
(∃ (f : X → Y), function.bijective f) ↔ ∃ (f : X → Y) (g : Y → X), (∀ (x : X), g (f x) = x) ∧ ∀ (y : Y), f (g y) = y
theorem
Q4b
(X Y : Type) :
(∃ (f : X → Y), function.bijective f) ↔ ∃ (g : Y → X), function.bijective g
Note: this declaration is incomplete and uses sorry
.
def
friends
{X Y Z : Type}
(f : X → Z)
(g : Y → Z)
(hf : function.injective f)
(hg : function.injective g) :
Prop
theorem
Q5
(X Y Z : Type)
(f : X → Z)
(g : Y → Z)
(hf : function.injective f)
(hg : function.injective g) :
Note: this declaration is incomplete and uses sorry
.