mathlib documentation

lean_problem_sheets / 2019.questions.sheet3

theorem question_one_a_true (X Y Z : Type) (f : X → Y) (g : Y → Z) :

Note: this declaration is incomplete and uses sorry.

theorem question_one_b_true (X Y Z : Type) (f : X → Y) (g : Y → Z) :

Note: this declaration is incomplete and uses sorry.

theorem question_one_c_true (X Y Z : Type) (f : X → Y) (g : Y → Z) :

Note: this declaration is incomplete and uses sorry.

theorem question_one_d_true (X Y Z : Type) (f : X → Y) (g : Y → Z) :

Note: this declaration is incomplete and uses sorry.

noncomputable def fa  :
Equations
def fb  :
Equations
def fc  :
Equations
constant Riemann_Hypothesis  :
Prop
noncomputable def fd  :
Equations
def fe  :
Equations
theorem Q2a1  :

Note: this declaration is incomplete and uses sorry.

Note: this declaration is incomplete and uses sorry.

theorem Q2c3  :

Note: this declaration is incomplete and uses sorry.

theorem Q4a (X Y : Type) (f : X → Y) (g : Y → X) (h2sided : (∀ (x : X), g (f x) = x) ∀ (y : Y), f (g y) = y) :
(∀ (y : Y), f (g y) = y) ∀ (x : X), g (f x) = x

Note: this declaration is incomplete and uses sorry.

theorem exists_bijection_iff_has_two_sided_inverse (X Y : Type) :
(∃ (f : X → Y), function.bijective f) ∃ (f : X → Y) (g : Y → X), (∀ (x : X), g (f x) = x) ∀ (y : Y), f (g y) = y
theorem Q4b (X Y : Type) :
(∃ (f : X → Y), function.bijective f) ∃ (g : Y → X), function.bijective g

Note: this declaration is incomplete and uses sorry.

def friends {X Y Z : Type} (f : X → Z) (g : Y → Z) (hf : function.injective f) (hg : function.injective g) :
Prop
Equations
theorem Q5 (X Y Z : Type) (f : X → Z) (g : Y → Z) (hf : function.injective f) (hg : function.injective g) :

Note: this declaration is incomplete and uses sorry.