Equivariant homomorphisms #
Main definitions #
mul_action_hom M X Y
, the type of equivariant functions fromX
toY
, whereM
is a monoid that acts on the typesX
andY
.distrib_mul_action_hom M A B
, the type of equivariant additive monoid homomorphisms fromA
toB
, whereM
is a monoid that acts on the additive monoidsA
andB
.mul_semiring_action_hom M R S
, the type of equivariant ring homomorphisms fromR
toS
, whereM
is a monoid that acts on the ringsR
andS
.
Notations #
X →[M] Y
ismul_action_hom M X Y
.A →+[M] B
isdistrib_mul_action_hom M X Y
.R →+*[M] S
ismul_semiring_action_hom M X Y
.
Equivariant functions.
Equations
- mul_action_hom.has_coe_to_fun M' X Y = {coe := mul_action_hom.to_fun _inst_2}
The identity map as an equivariant map.
Composition of two equivariant maps.
The inverse of a bijective equivariant map is equivariant.
The canonical map to the left cosets.
Equations
- mul_action_hom.to_quotient H = {to_fun := coe coe_to_lift, map_smul' := _}
Reinterpret an equivariant additive monoid homomorphism as an equivariant function.
Reinterpret an equivariant additive monoid homomorphism as an additive monoid homomorphism.
- to_fun : A → B
- map_smul' : ∀ (m : M) (x : A), self.to_fun (m • x) = m • self.to_fun x
- map_zero' : self.to_fun 0 = 0
- map_add' : ∀ (x y : A), self.to_fun (x + y) = self.to_fun x + self.to_fun y
Equivariant additive monoid homomorphisms.
Equations
- distrib_mul_action_hom.has_coe M A B = {coe := distrib_mul_action_hom.to_add_monoid_hom _inst_10}
Equations
- distrib_mul_action_hom.has_coe' M A B = {coe := distrib_mul_action_hom.to_mul_action_hom _inst_10}
Equations
- distrib_mul_action_hom.has_coe_to_fun M A B = {coe := distrib_mul_action_hom.to_fun _inst_10}
The identity map as an equivariant additive monoid homomorphism.
Equations
- distrib_mul_action_hom.has_one = {one := distrib_mul_action_hom.id M _inst_6}
Equations
Composition of two equivariant additive monoid homomorphisms.
The inverse of a bijective distrib_mul_action_hom
is a distrib_mul_action_hom
.
Reinterpret an equivariant ring homomorphism as an equivariant additive monoid homomorphism.
Reinterpret an equivariant ring homomorphism as a ring homomorphism.
- to_fun : R → S
- map_smul' : ∀ (m : M) (x : R), self.to_fun (m • x) = m • self.to_fun x
- map_zero' : self.to_fun 0 = 0
- map_add' : ∀ (x y : R), self.to_fun (x + y) = self.to_fun x + self.to_fun y
- map_one' : self.to_fun 1 = 1
- map_mul' : ∀ (x y : R), self.to_fun (x * y) = (self.to_fun x) * self.to_fun y
Equivariant ring homomorphisms.
Equations
- mul_semiring_action_hom.has_coe M R S = {coe := mul_semiring_action_hom.to_ring_hom _inst_20}
Equations
- mul_semiring_action_hom.has_coe' M R S = {coe := mul_semiring_action_hom.to_distrib_mul_action_hom _inst_20}
The identity map as an equivariant ring homomorphism.
Composition of two equivariant additive monoid homomorphisms.
The canonical inclusion from an invariant subring.