Lemmas about the interaction of power operations with order #
Note that some lemmas are in algebra/group_power/lemmas.lean
as they import files which
depend on this file.
theorem
nsmul_le_nsmul_of_le_right
{M : Type u_3}
[add_monoid M]
[preorder M]
[covariant_class M M has_add.add has_le.le]
[covariant_class M M (function.swap has_add.add) has_le.le]
{a b : M}
(hab : a ≤ b)
(i : ℕ) :
theorem
pow_le_pow_of_le_left'
{M : Type u_3}
[monoid M]
[preorder M]
[covariant_class M M has_mul.mul has_le.le]
[covariant_class M M (function.swap has_mul.mul) has_le.le]
{a b : M}
(hab : a ≤ b)
(i : ℕ) :
theorem
one_le_pow_of_one_le'
{M : Type u_3}
[monoid M]
[preorder M]
[covariant_class M M has_mul.mul has_le.le]
{a : M}
(H : 1 ≤ a)
(n : ℕ) :
theorem
nsmul_nonneg
{M : Type u_3}
[add_monoid M]
[preorder M]
[covariant_class M M has_add.add has_le.le]
{a : M}
(H : 0 ≤ a)
(n : ℕ) :
theorem
pow_le_one'
{M : Type u_3}
[monoid M]
[preorder M]
[covariant_class M M has_mul.mul has_le.le]
{a : M}
(H : a ≤ 1)
(n : ℕ) :
theorem
nsmul_nonpos
{M : Type u_3}
[add_monoid M]
[preorder M]
[covariant_class M M has_add.add has_le.le]
{a : M}
(H : a ≤ 0)
(n : ℕ) :
theorem
pow_le_pow'
{M : Type u_3}
[monoid M]
[preorder M]
[covariant_class M M has_mul.mul has_le.le]
{a : M}
{n m : ℕ}
(ha : 1 ≤ a)
(h : n ≤ m) :
theorem
nsmul_le_nsmul
{M : Type u_3}
[add_monoid M]
[preorder M]
[covariant_class M M has_add.add has_le.le]
{a : M}
{n m : ℕ}
(ha : 0 ≤ a)
(h : n ≤ m) :
theorem
nsmul_le_nsmul_of_nonpos
{M : Type u_3}
[add_monoid M]
[preorder M]
[covariant_class M M has_add.add has_le.le]
{a : M}
{n m : ℕ}
(ha : a ≤ 0)
(h : n ≤ m) :
theorem
pow_le_pow_of_le_one'
{M : Type u_3}
[monoid M]
[preorder M]
[covariant_class M M has_mul.mul has_le.le]
{a : M}
{n m : ℕ}
(ha : a ≤ 1)
(h : n ≤ m) :
theorem
one_lt_pow'
{M : Type u_3}
[monoid M]
[preorder M]
[covariant_class M M has_mul.mul has_le.le]
{a : M}
(ha : 1 < a)
{k : ℕ}
(hk : k ≠ 0) :
theorem
nsmul_pos
{M : Type u_3}
[add_monoid M]
[preorder M]
[covariant_class M M has_add.add has_le.le]
{a : M}
(ha : 0 < a)
{k : ℕ}
(hk : k ≠ 0) :
theorem
pow_lt_one'
{M : Type u_3}
[monoid M]
[preorder M]
[covariant_class M M has_mul.mul has_le.le]
{a : M}
(ha : a < 1)
{k : ℕ}
(hk : k ≠ 0) :
theorem
nsmul_neg
{M : Type u_3}
[add_monoid M]
[preorder M]
[covariant_class M M has_add.add has_le.le]
{a : M}
(ha : a < 0)
{k : ℕ}
(hk : k ≠ 0) :
theorem
pow_lt_pow'
{M : Type u_3}
[monoid M]
[preorder M]
[covariant_class M M has_mul.mul has_le.le]
[covariant_class M M has_mul.mul has_lt.lt]
{a : M}
{n m : ℕ}
(ha : 1 < a)
(h : n < m) :
theorem
nsmul_lt_nsmul
{M : Type u_3}
[add_monoid M]
[preorder M]
[covariant_class M M has_add.add has_le.le]
[covariant_class M M has_add.add has_lt.lt]
{a : M}
{n m : ℕ}
(ha : 0 < a)
(h : n < m) :
theorem
nsmul_nonneg_iff
{M : Type u_3}
[add_monoid M]
[linear_order M]
[covariant_class M M has_add.add has_le.le]
{x : M}
{n : ℕ}
(hn : n ≠ 0) :
theorem
one_le_pow_iff
{M : Type u_3}
[monoid M]
[linear_order M]
[covariant_class M M has_mul.mul has_le.le]
{x : M}
{n : ℕ}
(hn : n ≠ 0) :
theorem
nsmul_nonpos_iff
{M : Type u_3}
[add_monoid M]
[linear_order M]
[covariant_class M M has_add.add has_le.le]
{x : M}
{n : ℕ}
(hn : n ≠ 0) :
theorem
pow_le_one_iff
{M : Type u_3}
[monoid M]
[linear_order M]
[covariant_class M M has_mul.mul has_le.le]
{x : M}
{n : ℕ}
(hn : n ≠ 0) :
theorem
one_lt_pow_iff
{M : Type u_3}
[monoid M]
[linear_order M]
[covariant_class M M has_mul.mul has_le.le]
{x : M}
{n : ℕ}
(hn : n ≠ 0) :
theorem
nsmul_pos_iff
{M : Type u_3}
[add_monoid M]
[linear_order M]
[covariant_class M M has_add.add has_le.le]
{x : M}
{n : ℕ}
(hn : n ≠ 0) :
theorem
pow_lt_one_iff
{M : Type u_3}
[monoid M]
[linear_order M]
[covariant_class M M has_mul.mul has_le.le]
{x : M}
{n : ℕ}
(hn : n ≠ 0) :
theorem
nsmul_neg_iff
{M : Type u_3}
[add_monoid M]
[linear_order M]
[covariant_class M M has_add.add has_le.le]
{x : M}
{n : ℕ}
(hn : n ≠ 0) :
theorem
pow_eq_one_iff
{M : Type u_3}
[monoid M]
[linear_order M]
[covariant_class M M has_mul.mul has_le.le]
{x : M}
{n : ℕ}
(hn : n ≠ 0) :
theorem
nsmul_eq_zero_iff
{M : Type u_3}
[add_monoid M]
[linear_order M]
[covariant_class M M has_add.add has_le.le]
{x : M}
{n : ℕ}
(hn : n ≠ 0) :
theorem
one_le_zpow
{G : Type u_2}
[group G]
[preorder G]
[covariant_class G G has_mul.mul has_le.le]
{x : G}
(H : 1 ≤ x)
{n : ℤ}
(hn : 0 ≤ n) :
theorem
zsmul_nonneg
{G : Type u_2}
[add_group G]
[preorder G]
[covariant_class G G has_add.add has_le.le]
{x : G}
(H : 0 ≤ x)
{n : ℤ}
(hn : 0 ≤ n) :
theorem
canonically_ordered_comm_semiring.pow_pos
{R : Type u_4}
[canonically_ordered_comm_semiring R]
{a : R}
(H : 0 < a)
(n : ℕ) :
@[simp]
theorem
pow_lt_pow_of_lt_left
{R : Type u_4}
[ordered_semiring R]
{x y : R}
{n : ℕ}
(Hxy : x < y)
(Hxpos : 0 ≤ x)
(Hnpos : 0 < n) :
theorem
pow_lt_one
{R : Type u_4}
[ordered_semiring R]
{a : R}
(h₀ : 0 ≤ a)
(h₁ : a < 1)
{n : ℕ}
(hn : n ≠ 0) :
theorem
strict_mono_on_pow
{R : Type u_4}
[ordered_semiring R]
{n : ℕ}
(hn : 0 < n) :
strict_mono_on (λ (x : R), x ^ n) (set.Ici 0)
theorem
strict_mono_pow
{R : Type u_4}
[ordered_semiring R]
{a : R}
(h : 1 < a) :
strict_mono (λ (n : ℕ), a ^ n)
theorem
strict_anti_pow
{R : Type u_4}
[ordered_semiring R]
{a : R}
(h₀ : 0 < a)
(h₁ : a < 1) :
strict_anti (λ (n : ℕ), a ^ n)
theorem
pow_lt_pow_of_lt_one
{R : Type u_4}
[ordered_semiring R]
{a : R}
(h : 0 < a)
(ha : a < 1)
{i j : ℕ}
(hij : i < j) :
theorem
pow_le_pow_of_le_left
{R : Type u_4}
[ordered_semiring R]
{a b : R}
(ha : 0 ≤ a)
(hab : a ≤ b)
(i : ℕ) :
theorem
pow_le_one_iff_of_nonneg
{R : Type u_4}
[linear_ordered_semiring R]
{a : R}
(ha : 0 ≤ a)
{n : ℕ}
(hn : n ≠ 0) :
theorem
one_le_pow_iff_of_nonneg
{R : Type u_4}
[linear_ordered_semiring R]
{a : R}
(ha : 0 ≤ a)
{n : ℕ}
(hn : n ≠ 0) :
theorem
one_lt_pow_iff_of_nonneg
{R : Type u_4}
[linear_ordered_semiring R]
{a : R}
(ha : 0 ≤ a)
{n : ℕ}
(hn : n ≠ 0) :
theorem
pow_lt_one_iff_of_nonneg
{R : Type u_4}
[linear_ordered_semiring R]
{a : R}
(ha : 0 ≤ a)
{n : ℕ}
(hn : n ≠ 0) :
theorem
lt_of_pow_lt_pow
{R : Type u_4}
[linear_ordered_semiring R]
{a b : R}
(n : ℕ)
(hb : 0 ≤ b)
(h : a ^ n < b ^ n) :
a < b
theorem
le_of_pow_le_pow
{R : Type u_4}
[linear_ordered_semiring R]
{a b : R}
(n : ℕ)
(hb : 0 ≤ b)
(hn : 0 < n)
(h : a ^ n ≤ b ^ n) :
a ≤ b
Alias of sq_nonneg
.
Alias of sq_pos_of_ne_zero
.
theorem
abs_lt_of_sq_lt_sq
{R : Type u_4}
[linear_ordered_ring R]
{x y : R}
(h : x ^ 2 < y ^ 2)
(hy : 0 ≤ y) :
theorem
abs_le_of_sq_le_sq
{R : Type u_4}
[linear_ordered_ring R]
{x y : R}
(h : x ^ 2 ≤ y ^ 2)
(hy : 0 ≤ y) :
Arithmetic mean-geometric mean (AM-GM) inequality for linearly ordered commutative rings.
Alias of two_mul_le_add_sq
.