mathlib documentation

lean_problem_sheets / 2020.relations.equiv_partition2

structure partition (X : Type u_1) :
Type u_1
def always_true (X : Type u_1) :
X → X → Prop
Equations
theorem always_true_refl (X : Type u_1) :
theorem always_true_symm (X : Type u_1) :
theorem always_true_trans (X : Type u_1) :
theorem always_true_equiv (X : Type u_1) :
def always_true_setoid (X : Type u_1) :
Equations
def F {X : Type u_1} (S : setoid X) :
Equations
  • F S = sorry

Note: this declaration is incomplete and uses sorry.

def G {X : Type u_1} (P : partition X) :
Equations
  • G P = sorry

Note: this declaration is incomplete and uses sorry.

theorem FG_eq_id {X : Type u_1} (P : partition X) :
F (G P) = P

Note: this declaration is incomplete and uses sorry.

theorem GF_eq_id {X : Type u_1} (S : setoid X) :
G (F S) = S

Note: this declaration is incomplete and uses sorry.

Equations

Note: this declaration is incomplete and uses sorry.