Products / sums of lists of terms of a monoid #
This file provides basic results about list.prod
(definition in data.list.defs
) in a monoid.
It is in a separate file so that data.list.big_operators
does not depend on
algebra.group_power.basic
.
@[simp]
@[simp]
theorem
list.prod_le_of_forall_le
{α : Type u}
[ordered_comm_monoid α]
(l : list α)
(n : α)
(h : ∀ (x : α), x ∈ l → x ≤ n) :
theorem
list.sum_le_of_forall_le
{α : Type u}
[ordered_add_comm_monoid α]
(l : list α)
(n : α)
(h : ∀ (x : α), x ∈ l → x ≤ n) :