Integer power operation on fields and division rings #
This file collects basic facts about the operation of raising an element of a division_ring
to an
integer power. More specialised results are provided in the case of a linearly ordered field.
@[simp]
theorem
ring_hom.map_zpow
{K : Type u_1}
{L : Type u_2}
[division_ring K]
[division_ring L]
(f : K →+* L)
(a : K)
(n : ℤ) :
@[simp]
theorem
ring_equiv.map_zpow
{K : Type u_1}
{L : Type u_2}
[division_ring K]
[division_ring L]
(f : K ≃+* L)
(a : K)
(n : ℤ) :
@[simp]
theorem
zpow_le_of_le
{K : Type u}
[linear_ordered_field K]
{x : K}
(hx : 1 ≤ x)
{a b : ℤ}
(h : a ≤ b) :
theorem
zpow_le_one_of_nonpos
{K : Type u}
[linear_ordered_field K]
{p : K}
(hp : 1 ≤ p)
{z : ℤ}
(hz : z ≤ 0) :
theorem
one_le_zpow_of_nonneg
{K : Type u}
[linear_ordered_field K]
{p : K}
(hp : 1 ≤ p)
{z : ℤ}
(hz : 0 ≤ z) :
@[simp]
@[simp]
@[simp]
@[simp]
theorem
even.zpow_pos
{K : Type u}
[linear_ordered_field K]
{a : K}
{n : ℤ}
(hn : even n)
(ha : a ≠ 0) :
theorem
odd.zpow_nonneg
{K : Type u}
[linear_ordered_field K]
{a : K}
{n : ℤ}
(hn : odd n)
(ha : 0 ≤ a) :
theorem
odd.zpow_pos
{K : Type u}
[linear_ordered_field K]
{a : K}
{n : ℤ}
(hn : odd n)
(ha : 0 < a) :
theorem
odd.zpow_nonpos
{K : Type u}
[linear_ordered_field K]
{a : K}
{n : ℤ}
(hn : odd n)
(ha : a ≤ 0) :
theorem
odd.zpow_neg
{K : Type u}
[linear_ordered_field K]
{a : K}
{n : ℤ}
(hn : odd n)
(ha : a < 0) :
theorem
nat.zpow_ne_zero_of_pos
{K : Type u_1}
[linear_ordered_field K]
{p : ℕ}
(h : 0 < p)
(n : ℤ) :
theorem
zpow_strict_mono
{K : Type u_1}
[linear_ordered_field K]
{x : K}
(hx : 1 < x) :
strict_mono (λ (n : ℤ), x ^ n)
theorem
zpow_strict_anti
{K : Type u_1}
[linear_ordered_field K]
{x : K}
(h₀ : 0 < x)
(h₁ : x < 1) :
strict_anti (λ (n : ℤ), x ^ n)
@[simp]
@[simp]
@[simp]
theorem
pos_div_pow_pos
{K : Type u_1}
[linear_ordered_field K]
{a b : K}
(ha : 0 < a)
(hb : 0 < b)
(k : ℕ) :
@[simp]
theorem
div_pow_le
{K : Type u_1}
[linear_ordered_field K]
{a b : K}
(ha : 0 < a)
(hb : 1 ≤ b)
(k : ℕ) :