
Formalizing Clifford algebras
and related constructions

in the Lean theorem prover

Eric Francis Wieser

Gonville & Caius

Supervisor: Professor Joan Lasenby

February 2024

This dissertation is submitted for the degree of
Doctor of Philosophy

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work done
in collaboration except as declared in the preface and specified in the text.

It is not substantially the same as any work that has already been submitted before for any
degree or other qualification except as declared in the preface and specified in the text.

It does not exceed the prescribed word limit for the Engineering Degree Committee.

Eric Francis Wieser
February 2024

Abstract

Geometric Algebra (GA) is a mathematical framework used primarily by engineers and physicists,
while theorem proving software has its background originally in computer science departments.
This thesis brings the former into the language of the latter, in the more abstract setting of
Clifford algebras. It does so via the theorem proving language “Lean”, which is seeing increasing
adoption in mathematics departments.

The focus is much broader than simply formalizing Clifford algebras; Lean has an expansive and
monolithic library of formalized mathematics, mathlib, which the author made Clifford algebras a
part of. Over the course of this work, mathlib was reshaped and extended in various ways.

Part I of this thesis provides an introduction to geometric algebra, Clifford algebra, and an
exploration of the author’s path from numerical software through symbolic tools to the Lean
theorem prover.

Part II describes the various ways in which mathlib’s algebra libraries were shaped by the
author, covering: the use of typeclasses to manage automatic inference of scalar actions, the
use of the extensionality “tactic” to provide leverage when proving results about complicated
algebraic objects, a novel formalization of graded monoids, rings and algebras, and a deeper dive
into intricate traps around typeclasses that originate in the language itself.

Part III begins by illuminating informally how to build a library of results around Clifford
algebras using the universal property alone, then uses this approach to constructively build an
expansive set of well-known isomorphisms in a basis-free manner; contributing many formalizations
relating to other algebraic topics to mathlib along the way. These topics include dual quaternions,
tensor products, quadratic forms, alternating maps, and exponential operators.

As well as summarizing the author’s key contributions and possible avenues for future devel-
opment, the conclusions outline how other users of Lean are already building upon parts of the
author’s work.

iii

Acknowledgements

While this thesis represents the culmination of my journey as a PhD student, the path that led
here is not one I could have taken alone.

I am very grateful to my supervisor Joan Lasenby for her assistance throughout my time as a
PhD student; Joan always made time to meet to discuss ideas, suggest direction, and reply to
emails at unexpected hours of the night!

For introducing me to geometric algebra, I thank: my fellow PhD candidate Hugo Hadfield,
who planted the idea both in my mind and Joan’s of me joining the two of them in Cambridge
to pursue research in that area, and introduced me to many relevant people in the field; Leo
Dorst, whose Geometric Algebra for Computer Science was essential reading on the commute
in the months up to beginning the PhD, and by coincidence whose website of hand-drawn
Lego ideas provided me engineering inspiration more than a decade earlier; Steven De Keninck,
whose ganja.js tool proved invaluable for building early intuition; and Petr Vašík, who provided
repeated opportunities to share ideas in person with students and faculty alike studying geometric
algebra in Brno.

For the inspiration to pivot towards formalization in Lean, I thank: Utensil Song, who
broadening my horizons for geometric-algebra related software; Kevin Buzzard, whose “Natural
Number Game” captured my imagination; the LftCM 2020 organizers Johan Commelin and
Patrick Massot, for organizing an excellent virtual event that really cemented my path; the
“CLUG” regulars in Cambridge, Ed Ayers, Yaël Dillies, and Bhavik Mehta, for keeping me on
it; and the Lean community as a whole, for providing amazingly fast answers to any questions
I had on Zulip. I thank the mathlib maintainers, for inviting me to join the team despite my
engineering background. Thanks to Alexander Bentkamp and Marcus Zibrowius, who organized
and invited me to LftCM 2023, I was fortunate enough to finally meet many of these community
members in person.

I thank those who coauthored papers with me, Utensil Song and Jujian Zhang, the anonymous
reviewers who helped improve them, and those who otherwise assisted in preparing those papers:

• for “Graded Rings in Lean’s Dependent Type Theory”: Kevin Buzzard for his justified
insistence on needing an interface to talk about internal gradings, and Anne Baanen for
picking up the mantle I dropped on mathlib’s set_like refactor;

• for “Multiple-Inheritance Hazards in Dependently-Typed Algebraic Hierarchies”: Gabriel
Ebner, for campaigning for η-reduction support in Lean 4; Kazuhiko Sakaguchi, for providing
insight into analogous situations in Coq; and Yaël Dillies and Filippo A. E. Nuccio, for

valuable feedback on the manuscript.
• for “Computing with the Universal Properties of the Clifford Algebra and the Even

Subalgebra”: David Cohoe, for illuminating some ideas that inspired the paper.
Much of the work in this thesis resulted in software contributions to Lean’s mathlib; I am greatly

thankful to those who volunteered their time to review them, a process that was both educational
for me, and beneficial to mathlib as a whole. Ordered by the somewhat-arbitrary metric of the
number of my contributions they reviewed, I thank: Johan Commelin, Anne Baanen, Scott
Morrison, Oliver Nash, Yaël Dillies, Bryan Gin-ge Chen, Yury G. Kudryashov, Sébastien Gouëzel,
Riccardo Brasca, Floris van Doorn, Rob Lewis, Jireh Loreaux, Rémy Degenne, Chris Hughes,
Frédéric Dupuis, Kyle Miller, Gabriel Ebner, Bhavik Mehta, Junyan Xu, Alex J Best, Kevin
Buzzard, Mario Carneiro, Patrick Massot, Eric Rodriguez, Damiano Testa, Anatole Dedecker,
Heather Macbeth, Jeremy Tan Jie Rui, Yakov Pechersky, Joël Riou, Ruben Van de Velde, Moritz
Doll, Joseph Myers; and 49 others who reviewed a small handful of contributions.

I thank those who made me feel a part of the Signal Processing lab at Cambridge, despite the
increasingly diverging nature of my research: Hugo Hadfield, for reminding me that janky software
can still be excellent; Alex Grafton, for his challenging pop-culture references and willingness to
overlook shoe-based confusion; Shirley Liu, for arranging socials to bring the lab together; and
everyone who made the period of virtual-only coffee breaks feel slightly less isolating.

I thank my friends: those pursing academic careers of their own who inspired me; those who
helped me uproot my life in the US to return to the UK for this PhD; those who welcomed me
back to the UK as if I had never left; and everyone who took the initiative to arrange getting
together in person when I lacked the activation energy to do so myself.

I thank the Cambridge Trust for funding my research, and my new employer, Google DeepMind,
for a generous part-time schedule that allowed time to complete it. I thank the people behind
Zulip and GitHub, whose products opened effortless doors for collaboration that this work could
not have happened without; those at Gitpod, who generously granted free quota on the cloud on
which nearly all my development took place; and everyone who helped LATEX suck a little less
than the alternatives, through their packages or their advice on tex.stackexchange.com.

I thank my family, for every part they had to play on my path to this point. I thank my sister
Penny, who I couldn’t let be the only family member with a doctorate. I thank my wife Flo, for
her love for and patience with me even in the periods when the direction of my PhD was unclear,
her consideration for our wildly different working hours, and her ability to ply me with hot drinks
and baked goods when I needed them most. Finally, I thank my parents, for their encouragement
to pursue interest in math and computers at a young age, for every home-cooked dinner they
offered during my time as a PhD student, and for everything else they have done for me through
the years.

v

Contents

1. Introduction 1
1.1. Structure of this thesis . 2
1.2. Connections with published work . 3

I. Motivation 4

2. Mathematical background 5
2.1. Geometric algebra . 5

2.1.1. The wedge product . 6
2.1.2. The geometric product . 6
2.1.3. Transformations . 8
2.1.4. Further geometric expressiveness . 9

2.2. Clifford algebra . 11
2.2.1. Abstract algebra . 12
2.2.2. Notation . 13
2.2.3. Quadratic Forms . 13
2.2.4. The tensor algebra, T (V) . 14
2.2.5. A definition of G(V,Q) . 14
2.2.6. The exterior algebra,

∧
(V) . 14

3. Software 16
3.1. Typing considerations . 16
3.2. Numeric . 17

3.2.1. Accelerator compatibility . 18
3.3. Symbolic . 20

3.3.1. Example: multivector derivatives . 21
3.3.2. Flexibility concerns . 22
3.3.3. Correctness issues . 24

3.4. Formal . 25
3.4.1. An introduction to the Lean theorem prover 26
3.4.2. Revisiting the matrix examples . 28
3.4.3. Lean’s mathematical library . 31

vi

Contents

II. Algebraic infrastructure 35

4. Scalar actions 36
4.1. Basic typeclasses . 37
4.2. Elementary actions . 37

4.2.1. Left multiplication . 37
4.2.2. Repeated addition and subtraction . 38
4.2.3. Application of endomorphisms and automorphisms 38

4.3. Derived actions . 39
4.3.1. Function types, through their codomain 40
4.3.2. Sets, through their elements . 40
4.3.3. Morphisms of additive groups, through their codomain 40
4.3.4. Polynomials, through their coefficients . 40
4.3.5. Interactions with other actions . 41

4.4. Algebras and not-quite algebras . 42
4.5. Typeclass diamonds . 43

4.5.1. Non-commuting diamonds . 43
4.5.2. Definitional equality . 44

4.6. Conjugation, via type synonyms . 46
4.7. Right actions . 48

4.7.1. Bimodules . 48
4.7.2. Interaction with algebra . 49
4.7.3. Other compatibility concerns . 50
4.7.4. On functions, through their domains . 50

4.8. Lean 4’s new HMul typeclass . 51
4.9. Alternatives to type synonyms . 53
4.10. Summary . 54

5. Extensionality 55
5.1. Chaining extensionality lemmas . 57
5.2. Wider applications . 58
5.3. As a motivation for point-free statements . 60
5.4. Summary . 61

6. Graded rings 63
6.1. Introduction . 63
6.2. Prior formalizations . 66
6.3. External gradings . 66

6.3.1. Graded semigroups . 67
6.3.2. Graded monoids . 69

vii

Contents

6.3.3. Graded (semi)rings . 70
6.4. Internal gradings . 73

6.4.1. Decompositions of sets . 73
6.4.2. Graded monoids . 73
6.4.3. Decompositions of additive monoids and R-modules 75
6.4.4. Graded (semi)rings . 75

6.5. Graded R-algebras . 76
6.6. Summary . 77

7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies 79
7.1. Introduction . 80
7.2. Types of structure inheritance . 81

7.2.1. Flat structures . 82
7.2.2. Nested structures . 82

7.3. Typeclasses depending on typeclasses . 85
7.3.1. Equality of typeclass arguments . 85
7.3.2. Inequality of typeclass arguments . 86
7.3.3. Impact of the inheritance strategy . 86
7.3.4. Other examples in mathlib . 87

7.4. Mitigation strategies . 88
7.4.1. Perform η-reduction of structures in the kernel 88
7.4.2. Use “flat” inheritance . 89
7.4.3. Carefully select “preferred” paths . 89
7.4.4. Ban non-root structures in dependent arguments 90

7.5. Implications for packed structures . 91
7.6. Related work . 92
7.7. Summary . 93

III. Formalizations 94

8. Universal properties as a computational tool 95
8.1. Recursors . 96
8.2. The universal property of the Clifford Algebra . 97

8.2.1. Universal properties as recursors . 98
8.2.2. Universal properties as a universal interface 99
8.2.3. Elementary GA operations via the universal property 100

8.3. The universal property of the even subalgebra . 101
8.3.1. The isomorphism with the even subalgebra 104
8.3.2. The isomorphism between even subalgebras of negated quadratic forms . 106

viii

Contents

8.4. The isomorphism to the exterior algebra . 107
8.5. Formalization . 109
8.6. Summary . 109

9. Formalizing Clifford algebras 110
9.1. Remarks on type theory . 110
9.2. Existing formalizations of geometric algebra . 111

9.2.1. Fixed-dimension representations . 111
9.2.2. Recursive tree representations . 112
9.2.3. Indexed coordinate representations . 113

9.3. The basics . 114
9.3.1. Construction via quotients . 114
9.3.2. Recovering the universal property . 116
9.3.3. Conjugations . 117
9.3.4. Induction . 119
9.3.5. The wedge product . 120

9.4. Versors . 121
9.5. Grade selection . 123

9.5.1. N-grading . 123
9.5.2. Z2-grading . 125

9.6. Constructing specific algebras . 125
9.7. Pathological cases . 127

9.7.1. Non-unique associated forms . 128
9.7.2. Non-existent associated forms, and injectivity of R→ G(V,Q) 128

9.8. Summary . 131

10.Isomorphisms 132
10.1. Well-known isomorphisms . 133

10.1.1. Reals . 133
10.1.2. Complex numbers . 133
10.1.3. Dual numbers . 135
10.1.4. Quaternions . 136
10.1.5. Dual Quaternion . 137

10.2. Complexification . 141
10.2.1. Base change of quadratic forms . 142
10.2.2. Tensor products of quadratic forms . 143
10.2.3. Tensor products of bilinear forms . 144
10.2.4. Algebraic towers in tensor products . 145
10.2.5. Tensor products of algebras . 149
10.2.6. Base change of Clifford algebras . 151

ix

Contents

10.3. Direct sums of quadratic vector spaces . 155
10.3.1. Direct sums of quadratic forms . 156
10.3.2. The tensor product of graded algebras . 157
10.3.3. Constructing the isomorphism . 161

10.4. Summary . 162

11.Further formalizations 164
11.1. Alternating maps . 164

11.1.1. Products of alternating maps . 165
11.1.2. Further links with the exterior algebra . 166

11.2. Exponential operators . 167
11.2.1. Matrices . 169
11.2.2. Dual numbers . 171
11.2.3. Quaternions . 174

11.3. Summary . 174

12.Conclusions 176
12.1. Key contributions . 176
12.2. Follow-up work . 177
12.3. Future directions . 178

12.3.1. Further changes to scalar actions . 178
12.3.2. Further development of graded algebraic objects 178
12.3.3. Further comparison between flat and nested structures 178
12.3.4. Syntactic support for universal properties 180
12.3.5. Formalizing further elementary results about Clifford algebras 180
12.3.6. Improvements to mathlib’s calculus library 181

12.4. Summary . 181

References 182

Github references 192

x

List of Tables, Figures, and Listings

2.1. The Cayley table for the geometric product in 3D 7
2.2. The path to conformal geometry . 10
2.3. Constructions in 3D conformal geometric algebra (CGA) 10
2.4. Transformation rotors in 3D CGA . 11
2.5. Metrics of common geometric algebras . 11

3.1. Comparison of implementations showing improvements to the JIT-ing interface . 19
3.2. The call-graph of a pure-Python algorithm in the style of fig. 3.1a, shown in red,

vs the same algorithm JIT-ed in the old style of fig. 3.1b, shown in blue. 19
3.3. The architecture of the type system interfacing clifford and numba. 20
3.4. Example usage of the galgebra package . 22
3.5. Comparison of expression tree representations for various number systems in sympy. 23
3.6. The cost of coefficient-wise representations . 23
3.7. Manipulating matrix determinants in sympy 1.8 25
3.8. Manipulating matrix determinants in Lean . 30
3.9. Progress in formalizing the Matrix cookbook . 30
3.10. Comparison of metrics between standard libraries of popular provers using data

from their GitHub repositories as of July 2021. 32
3.11. Notation for homomorphisms and isomorphisms in mathlib 34

4.1. Hierarchy of scalar action and multiplicative typeclasses 38
4.2. Morphism- vs typeclass-based representations of actions in mathlib, and translations

between them. 39
4.3. A commuting diamond in typeclass search . 44
4.4. A non-commuting diamond in typeclass search 44
4.5. Compounding diamonds in typeclass search . 45
4.6. Non-commuting diamonds in repeated addition actions 46
4.7. A non-commuting diamond caused by DomMulAct 51
4.8. A non-commuting diamond caused by HMul for f g : ι → ℕ 52

5.1. Two proofs showing that the natural braiding of the tensor product is symmetric 56
5.2. A factorization of theorems 5.3 and 5.4 into theorem 5.5 (T) and theorem 5.1 (L) 58
5.3. Extensionality for a linear map from an arbitrarily-chosen compound type. . . . 59

xi

List of Tables, Figures, and Listings

6.1. The algebraic hierarchy of graded objects discussed in this chapter. 65
6.2. Merits of the various approaches to defining g_semigroup 69

7.1. A hierarchy of algebraic typeclasses, where arrows indicate a stronger typeclass
implying a weaker typeclass. 81

7.2. The hierarchy in fig. 7.1 described using extends clauses. 81
7.3. Two approaches to implementing inheritance, by elaborating the extends clauses

in listing 7.2 as the highlighted lines. 84
7.4. Paths taken through the graph in fig. 7.1 when filling the two implicit arguments

of the type of module R R. 87
7.5. Alternate placements of the “preferred” spanning tree, with the diamond discussed

in fig. 7.4 overlaid. 89
7.6. An algebraic hierarchy where a suitable spanning tree placement can ensure all

squares commute . 90

8.1. Graphical representation of two equivalent ways to define the universal property,
where (b) corresponds to theorem 8.1. 98

8.2. The universal property of the even subalgebra . 102

10.1. Typeclass resolution for module structures on four-way tensor products 147
10.2. The process taken by the ext tactic to turn the bilinear version of the equality in

eq. (10.21) into a statement about pure tensors, along with the result of a final
stage of cleanup. 153

11.1. Refactoring matrix.det to use alternatization 166

xii

1
Introduction

At its core, “geometric algebra” is an exercise in unification; its proponents remark that it
combines and unifies the scalar (dot) and vector (cross) products in euclidean space, that it
generalizes over the complex numbers and the quaternions, that it elegantly merges geometry with
algebra, and even that it merges Maxwell’s four equations into one [5, §7.1]. Pedagogically, this
unification is a great asset; learning the mathematical framework of geometric algebra provides
transferrable intuition to other areas of mathematics, while the connection between geometric
and algebraic ideas enable this intuition to partially be gained visually.

From the author’s perspective, the most compelling areas for applying geometric algebra are in
computer graphics, computer vision, and robotics; all areas where software, which is inevitably
algebraic in nature, is primarily manipulating geometric objects. Placing geometric algebra in the
toolbox of software developers, engineers, and researchers in these areas, especially in toolboxes
unequipped with quaternions, provides a valuable alternative in places where the typical fallback,
matrices, are an ill-fitting tool; and indeed, there are a plethora of software libraries for geometric
algebra, across various frameworks and languages.

To extend the metaphor, however, a single standard toolbox is not appropriate for everyone. A
swiss army knife is rarely of use in a fully-equipped workshop; and in the same way, geometric
algebra loses some appeal in the context of more abstract mathematics, where there are already
more specialized tools (Lie groups, orthogonal groups, affine subspaces, …) within reach. To its
credit, geometric algebra is not absent from this “workshop of abstract mathematics”; it can
be regarded as a repackaged presentation of Clifford algebras, which are of independent (albeit
somewhat niche) mathematical interest.

This thesis builds bridges between these two outlooks on the same ideas: linking the presentation
of geometric algebra seen in software applications with the abstract mathematical concepts from
which geometric algebra is distilled. The locations in which these bridges are placed is largely
devoid of novelty, but they are constructed with an unusual set of materials: not the usual
language of proofs in abstract mathematics, nor the numerical outputs of computational computer
code, but a hybrid of the two; a computer language capable of providing formals proofs, the Lean
theorem prover [6; 7].

1

Chapter 1. Introduction

Computer-formalized mathematics, while arriving at the bleeding edge of some mathematical
fields [8; 9], is still a long way from catching up to conventional mathematics as a whole, and
so a significant fraction of this thesis will be spent building the formal groundwork needed to
bring Clifford algebras, and results about them, within reach. This effort is far from wasted;
the groundwork described here now forms a small part of a much larger community-maintained
formalization library (mathlib) used by almost all mathematical users of Lean.

1.1. Structure of this thesis
This thesis begins with some background material in part I, chapter 2 with a brief and fairly typical
introduction to geometric algebra, followed by an even briefer introduction to the mathematical
objects usually faced when working more abstractly with Clifford algebras. Chapter 3 explores
a sampling of the challenges faced by the author when writing software for geometric algebra,
and ultimately provides motivation for moving from symbolic software to proof assistants. It is
here that the reader is provided an explanation of the Lean theorem prover and its mathematics
library mathlib, and taught some basic syntax.

Part II explores a variety of design challenges that appear when formalizing the algebraic
objects that will turn out to be prerequisites to formalizations in later chapters. The topics
covered are scalar actions (chapter 4), extensionality (chapter 5), and graded rings (chapter 6);
as well as a somewhat more foundational algebraic issue that posed a risk to mathlib as a whole
(chapter 7).

In part III, the focus of the thesis narrows in on Clifford algebras, applying the tools developed
in part II.

Chapter 8 presents a somewhat atypical way to think about geometric algebra, and the link
between this outlook and some ideas from functional programming; it introduces the reader to
the universal property of the Clifford algebra, and uses it to outline constructive generalizations
of some known results. This chapter is mostly free of Lean code.

Having set up an excess of mathematical and formal preliminaries, chapter 9 summarizes some
prior work on formalizing Clifford algebras in other proof systems, and presents the author’s
formalization of Clifford algebras in Lean, largely as it now appears in mathlib.

Chapter 10 follows on by demonstrating how universal properties can be used to link Clifford
algebras with other algebraic constructions in mathlib; introducing universal properties for the
dual numbers, complex numbers, and quaternions along the way. In addition to these concrete
constructions, this chapter explores isomorphisms with more abstract constructions, heavily
leaning on part II along the way.

It would have been unreasonable to expect to fully formalize every result about Clifford algebras;
chapter 11 contains some formalizations that are in some way relevant to Clifford algebra, but for
which further work would be needed to make the connection formally.

Chapter 12 summarizes the key contributions of this thesis, makes note of work by others that

2

Chapter 1. Introduction

builds upon the work here, and outlines avenues for further formalization.

1.2. Connections with published work
Chapter 9 and sections 3.4 and 10.1.2 are from the “Formalizing Geometric Algebra in Lean”
paper [10] that set the direction of this thesis. Chapter 4 is a much longer version of “Scalar
Actions in Lean’s Mathlib” [11]. After writing this thesis, chapter 5 was extracted into “Chaining
extensionality lemmas in Lean’s Mathlib” [12]. Chapter 6 is largely the same as “Graded Rings in
Lean’s Dependent Type Theory” [2]. Chapter 7 is “Multiple-Inheritance Hazards in Dependently-
Typed Algebraic Hierarchies” [3], with some errata corrected. Chapter 8 is “Computing with the
Universal Properties of the Clifford Algebra and the Even Subalgebra” [13], which is itself the
extended version of [4].

The vast majority of the code in this thesis, if not from the work listed here, is adapted from
the author’s contributions to mathlib.

3

Part I.

Motivation

4

2
Mathematical background

One geometry cannot be more true than another; it
can only be more convenient.

(Henri Poincaré)

2.1. Geometric algebra
It is at this point that the reader, if unacquainted with geometric algebra, probably feels that
they are overdue an explanation of what exactly geometric algebra is.

A typical introduction to linear algebra might start by talking about a vector in 3D euclidean
space (R3) via its coordinates v = [vx, vy, vz]

T, or alternatively by coefficients of an explicit basis
(which we shall prefer in this section), as v = vxex + vyey + vzez. Not long after, the vector dot
and cross products are revealed, as

v · w = vxwx + vywy + vzwz (2.1)

v × w = (vywz − vzwy)ex + (vzwx − vxwz)ey + (vywz − vzwy)ez, (2.2)

for which some algebraic intuition arises from the multiplication tables

· ex ey ez

ex 1 0 0

ey 0 1 0

ez 0 0 1

and

× ex ey ez

ex 0 ez −ey
ey −ez 0 ex

ez ey −ex 0

, (2.3)

and some geometric intuition arises from v ·w = ‖v‖‖w‖ cos θ and v ×w = ‖v‖‖w‖ sin θ n, where
θ is the angle between the vectors and n is a unit vector orthogonal to v and w.

5

Chapter 2. Mathematical background

2.1.1. The wedge product

A natural question that arises is how × should be generalized when the number of dimensions is
not three; for which there is no satisfactory answer while retaining a bilinear function that takes
two vectors and produces a third. The answer provided by geometric algebra is to use an entirely
different product, the wedge product v ∧w, characterized (on vectors) by the multiplication table

∧ ex ey ez

ex 0 exy −ezx
ey −exy 0 eyz

ez ezx −eyz 0

.

This table has the obvious benefit that it generalizes, noting that every entry is just a concatenation
of its operands, with a minus sign if the order is swapped. The catch is that new exy, eyz, and
ezx basis symbols have been conjured from thin air! These are neither scalars nor vectors, but a
new type of object: bivectors or 2-vectors. Intuitively1, these correspond to scaled and oriented
planes through the origin; as 2ex corresponds to a line in the positive x direction with magnitude
2, 3exy corresponds to the xy plane with positive orientation and magnitude 3. In general, v ∧ w

describes the plane spanned by v and w, and is 0 if there is no such plane due to the vectors
being parallel. As a consequence, we have v ∧ v = 0 and v ∧ w = −w ∧ v.

The wedge product has one more trick up its sleeve; it is in fact not just a binary function
of vectors, but of r-vectors, for which vectors are the special case with r = 1 (and scalars are
the case with r = 0). Notably, we can evaluate 2 ∧ ex ∧ eyz = 2exyz, and obtain a trivector (or
3-vector); the full definition of the wedge product in 3D is shown, shaded, in table 2.1. Collectively,
{1, ex, ey, ez, eyz, ezx, exy, exyz} are known as “basis blades”. The geometric intuition remains;
the wedge product of n vectors is the subspace spanned by them, scaled by the volume of the
parallelepiped between them; and so zero if the vectors are linearly dependent.

This provides a powerful link between algebra and geometry; if we have a plane (through the
origin) represented by the bivector B, and a vector v, the expression v ∧ B = 0 is true if and
only if v lies on B. This generalizes to hyperplanes in higher dimensions, where we refer to n-ary
wedge products of vectors as n-“blades”. We often choose to ignore the magnitude of our blades,
instead only considering their direction; in our interpretation, ex and 2ex both represent the same
line along the x-axis in the positive direction.

2.1.2. The geometric product

Geometric algebra brings one more crucial product, which when restricted to the vectors combines
the · and ∧ products such that vw = v · w + v ∧ w. This raises a new surprise; we are adding the
scalar (or 0-vector) v · w to the bivector (or 2-vector) v ∧ w, giving us an object of “mixed grade”
which we call a multivector. We use the notation G(R3) to refer to multivectors constructed from

1At least, in 3D.

6

Chapter 2. Mathematical background

vectors in R3, similarly to [14]. We can easily extend the wedge product in section 2.1.1 from
r-vectors to multivectors by linearity.

From vw = v · w + v ∧ w and v ∧ w = −w ∧ v we can conclude

wv = 2v · w − vw and v2 = v · v, (2.4)

which (along with bilinearity, and the fact that our basis is orthogonal) is sufficient to evaluate
the geometric product of any two basis blades by swapping pairs of adjacent vectors until all
repeated basis vectors are eliminated; for instance, eyzexy = (eyez)(exey) = (−ezey)(−eyex) =
ez(ey · ey)ex = ezx. The resulting Cayley table (a multiplication table for the generators) is
table 2.1.

1 ex ey ez exy ezx eyz exyz
ex 1 exy −ezx ey −ez exyz eyz
ey −exy 1 eyz −ex exyz ez ezx
ez ezx −eyz 1 exyz ex −ey exy
exy −ey ex exyz −1 eyz −ezx −ez
ezx ez exyz −ex −eyz −1 exy −ey
eyz exyz −ez ey ezx −exy −1 −ex
exyz eyz ezx exy −ez −ey −ex −1

Table 2.1.: The Cayley table for the geometric product in 3D
The first row and column double as the headings of the table, and its entries show the product
of the row heading by the column heading. The shaded cell shows eyzexy = ezx. The ∧
product can be read off by only looking at the cells of this color and considering all others
zero; so for instance, eyz ∧ exy = 0.

The fact that the wedge product can be read off from the same table as the geometric product
in table 2.1 indicates that there is extra structure to capture; that of “grade selection”, which
restricts a multivector to a piece of a certain degree. As an example, we would write that the
piece of degree 2 of exy + 2eyz + 1 is 〈exy + 2eyz + 1〉2 = exy + 2eyz. The property that we see in
table 2.1 is that for homogeneous multivectors a and b of degrees i and j, we have the following
connection between the wedge and geometric product

a ∧ b = 〈ab〉i+j . (2.5)

Extracting geometric intuition from the geometric product is ironically rather harder than it
was from the wedge product; though we can use it as a building block to build a more geometric
operation.

7

Chapter 2. Mathematical background

2.1.3. Transformations

The geometric operation which can be constructed from the geometric product in section 2.1.2 is
that of applying orthogonal transformations; given two vectors, we can reflect x in a with

x′ := axa = (2x · a− xa)a = (2x · a)a− ‖a‖2x, (2.6)

where juxtaposition is the geometric product, and the expansion of axa follows from eq. (2.4).
Conveniently, this results in x′ being a pure vector, despite the geometric product usually being
of mixed grade.

It would be preferable for these transformations to be composable, such that we can express
the composition of two reflections, in a and b, as a single element. We do this by introducing a
reversion operator, defined such that for vectors a1, . . . , an we have (a1 · · · an)̃ = ãn · · · ã1, and
for sums of such terms it extends linearly2. Adjusting eq. (2.6) to

x′ := AxÃ, (2.7)

where A is equal to an arbitrary product of vectors (which we call a “versor”), we can now view a
sequence of transformations as a single transformation, as we can rewrite a(bxb̃)ã as (ab)x(ab)̃.
Hence, eq. (2.7) for A := abc describes reflecting x in each of a, b, and c in sequence.

It should be clear that this is an orthogonal transformation, as reflections themselves are
orthogonal. In fact, by the Cartan–Dieudonné theorem, every orthogonal transformation can be
built in this way. When A is a product of an even number of vectors, we call it a “rotor”, and it
represents the orthonormal transformations.

There is one more valuable property to extract from this definition; that it generalizes to
multivectors X, where it distributes over products. On versors A =

∏
i ai, we have ÃA =

∏
i ‖ai‖2

which is a scalar, and so (AxÃ)(AyÃ) = A(xÃAy)Ã = (
∏

i ‖ai‖2)A(xy)Ã. Indeed, we often choose
Ã to be a “unit” versor, such that

∏
i ‖ai‖2 = 1. It follows that this also distributes over wedge

products.
Respectively, this provides two pieces of geometric intuition: for the geometric product, that

transformations can themselves be transformed, as (UBŨ)(UxŨ)(UBŨ)̃ = U(BxB̃)Ũ ; and for
the wedge product, that vectors can equivalently be transformed either before or after being
combined into blades.

Rotors behave much the same way as matrices would in linear algebra—the rotors of G(R3)

are equivalent to the 3 × 3 rotation matrices, but are represented with 4 coefficients not 9.
This is valuable for two reasons: it allows transformations to be computationally more efficient,
and it prevents numerical error manipulating unwanted degrees of freedom, such as a skew
component being introduced into a matrix. Rotors are already used under a different name in
many engineering applications—the rotors of G(R3) are exactly the quaternions, and the rotors of

2It is clear this is a well-defined operation if restricted to basis vectors; we shall see it is so in section 8.2.3 without
mention of this restriction.

8

Chapter 2. Mathematical background

G(R3,0,1) (a notation which will be explained in section 2.1.4) are the dual quaternions with real
magnitude. The value geometric algebra (GA) provides here is twofold: it unifies these similar
objects and extends them to arbitrary dimension and metric, and it allows them to be applied to
not just vectors but all of the geometric objects we saw in table 2.3.

2.1.4. Further geometric expressiveness

So far we have been working with just the basis vectors ex, ey, and ez, in the algebra G(R3), which
we can more precisely call G(R3,0,0). Rp,q,r here refers to a vector space spanned by p + q + r

linearly-independent orthogonal vectors, of which p square to (i.e., have v · v equal to) 1, q square
to −1, and r square to 0; while G(V) refers to the GA constructed over that vector space. We
tend to omit trailing zeros in the “signature” p, q, r for brevity.

The G(R3) algebra is quite limiting: its blades represent only points, lines, planes, and volumes
at the origin, and its versors represent reflections and rotations around the origin. This section
outlines how introducing additional basis vectors makes G(V) more geometrically expressive.

Projective Geometric Algebra (PGA)

For the sake of visualization, let us consider an even simpler algebra with just two basis vectors,
G(R2), which we would like to extend to include objects away from the origin. We achieve this
by adding a third basis vector no, and interpreting objects via their intersection with the plane
no + xex + yey as shown in fig. 2.2a—a line in the new 3D space is interpreted as a point in 2D,
and a plane in the new 3D space is interpreted as a line in 2D.

If we stop here, and declare that n2
o = 0, we have arrived at the algebra G(R2,0,1), which

is a variant3 of an algebra known as 2D PGA. In the harder-to-visualize 3D analogue, 1-, 2-,
and 3-blades now represents points, lines, and planes away from the origin. Our rotors now
additionally represent translations and rotations away from the origin, using 8 coefficients to
represent 6 degrees of freedom.

Conformal Geometric Algebra (CGA)

We can make our algebra even more powerful by adding one more basis vector n∞. In fig. 2.2b, we
do not show the no axis, and assume that all of our blades can now represent elements which need
not pass through the origin. We now add another layer of interpretation over this 3D space, and
interpret these blades in 2D via their intersection with the paraboloid xex + yey +

1
2 (x

2 + y2)n∞.
A point in 2D is therefore represented by a point that lies on this parabola, for which we introduce
the up function

X = up(x) = no + x+ 1
2 |x|

2n∞. (2.8)

3PGA typically refers to the dual algebra, G∗(Rn,0,1) know as “Plane-based Geometric Algebra”, where points
are represented as n-vectors.

9

Chapter 2. Mathematical background

ey

no

ex

(a) Adding no to introduce offsets

The red plane and blue line through the origin are
interpreted as an offset line and point via their
intersection with the white plane with an n0 coor-
dinate of 1.

ey

n∞

ex

(b) Adding n∞ to introduce curvature

The offset red plane and blue line are interpreted
as a circle and point-pair via their intersection with
the white paraboloid.

Figure 2.2.: The path to conformal geometry

We can see in fig. 2.2b that our algebra can now represent circles (of which lines are a special
case), along with the other objects in table 2.3.

Point X = up(x) = no + x+ 1
2 |x|

2n∞
Point-pair P = X1 ∧X2

Circle C = X1 ∧X2 ∧X3

Line L = X1 ∧X2 ∧ n∞
Sphere S = X1 ∧X2 ∧X3 ∧X4

Plane Π = X1 ∧X2 ∧X3 ∧ n∞

Table 2.3.: Constructions in 3D CGA
Xi are conformal points coincident with the object in question.

Our final step is to define a useful metric4 for our new basis vectors. The choice of no ·n∞ := −1,
n2
o := 0, n2

∞ := 0, no · ei := 0, n∞ · ei := 0 (shown as a table in fig. 2.5b) is particularly convenient,
as among other reasons it means for two 1-vectors X := up(x) and Y := up(y),

2(X · Y) = 2(no + x+ 1
2 |x|

2n∞) · (no + y + 1
2 |y|

2n∞) (2.9)

= 2(x · y)− |x|2 − |y|2 (2.10)

= −|x− y|2, (2.11)

which relates X · Y to the Euclidean distance between x and y. With this metric, the geometric
product provides the transformations in table 2.4.

4A term used in geometric algebra to refer to a matrix representing an arbitrary symmetric bilinear form.

10

Chapter 2. Mathematical background

Translation by a T (a) = 1 + 1
2an∞ = exp

(
1
2an∞

)
Rotation by θ around B̂ R(θ, B̂) = cos

(
1
2θ
)
+ B̂ sin

(
1
2θ
)

= exp
(

1
2 B̂θ

)
Dilation by exp(−α) D(α) = cosh

(
1
2α
)
+ n∞ ∧ no sinh

(
1
2α
)

= exp
(
1
2αn∞ ∧ no

)
Table 2.4.: Transformation rotors in 3D CGA

Here, a is a spatial vector, α and θ are scalars, and B̂ is a unit spatial bivector. We say
a multivector is spatial if it has no no or n∞ components. The expression in terms of exp
follows from a standard series expansion.

It turns out that from two new unit vectors e2+ = 1 and e2− = −1 we can construct no = e−+e+

and n∞ = 1
2 (e− − e+) while still satisfying fig. 2.5b. For this reason, CGA can be described

as G(Rn+1,1). In general, thanks to Sylvester’s law of inertia, any non-diagonal metric can be
converted via a change of basis into a diagonal metric with only 1, −1, and 0—the choice of basis
does not affect the properties of the space, only its signature does.

Other algebras

While CGA and PGA are some of the more common geometric algebras, they are certainly not
the only ones in use. To name some others: Space-Time Algebra (fig. 2.5c) gives an alternative
representation of Pauli matrices in physics, and “GA for conics” extends 2D CGA to include all
conic sections.

· e1 e2 e3 no

e1 1 0 0 0
e2 0 1 0 0
e3 0 0 1 0
no 0 0 0 0

(a) G(R3,0,1), PGA

· e1 e2 e3 no n∞
e1 1 0 0 0 0
e2 0 1 0 0 0
e3 0 0 1 0 0
no 0 0 0 0 1
n∞ 0 0 0 1 0

(b) G(R4,1), CGA

· e1 e2 e3 et
e1 -1 0 0 0
e2 0 -1 0 0
e3 0 0 -1 0
et 0 0 0 1

(c) G(R1,3), STA

Figure 2.5.: Metrics of common geometric algebras

2.2. Clifford algebra
In section 2.1, we presented geometric algebra in a way that was centered around a choice of basis
ex, ey, and ez, and assumed that our coefficients were all real numbers. In this section, we will
look at a much more general definition, that of Clifford algebras5.

5Some liberty is being taken here with this naming; indeed, some authors use the two names interchangeably.

11

Chapter 2. Mathematical background

2.2.1. Abstract algebra

Before summarizing a more abstract outlook on geometric algebras, it helps to be reminded what
abstract outlooks on the real numbers look like. In section 2.1 we really only used a few such
perspectives; some examples include:

• that they have a commutative +, a 0, and a −, all of which combine in the expected ways6;
we say they form a “commutative additive group”.

• that they have a commutative × and a 1, that combine with each other in the expected
ways; we say they form a “commutative monoid”.

• that in addition to forming a commutative additive group and a commutative monoid, the
+ and × combine in the expected ways; we say they form a “commutative ring”.

• that in addition to forming a commutative ring, they have at least two elements, and a /

defined on non-zero elements that combines with × and 1 in the expected ways; we say
they form a “field”.

These categorizations belong to abstract algebra, and permit us to define or prove things once,
then apply the same results to multiple concrete types; integers (a commutative ring), rationals
(a field), angles modulo 2π (a commutative additive group), etc.

The v = vxex + vyey + vzez approach to vectors is pedagogically appealing, and close to the
representation of vectors in software; but it is not a particularly general mathematical abstraction,
as it usually limits us to Rn. The abstract approach is to talk about “vector spaces”; commutative
additive groups which can be multiplied by scalars from a field. We say that Rn is an R-vector
space, as it can be scaled by the real numbers; but this definition permits more surprising objects
like R→ R, the space of real-valued functions, to be vector spaces.

A further generalization of vectors spaces is that of modules; these drop the requirement that
the scalars belong to a field, allowing them to belong to a (possibly non-commutative) ring instead.
This allows us to talk about integer coordinates Z3 as a Z-module, or H2 (pairs of quaternions)
as an H-module. We are still perfectly within our rights to say that R3 is an R-module; indeed,
when K is a field, then K-module and K-vector space are synonyms by definition.

We need one last abstraction before we can move onto Clifford algebras; a meaning for the word
“algebra”. An (associative) R-algebra over a commutative ring R is an R-module such that scalar
multiplication commutes across multiplication; for instances, complex matrices are an R-algebra
because for a real number c and complex matrices M and N , we have cMN = McN = MNc,
even though matrices do not commute in general.

6Here is as good a place as any to note that IEEE floats used in software do not behave as expected!

12

Chapter 2. Mathematical background

2.2.2. Notation

In this thesis, we will use the colon notation x : R to say “x is in the ring R”, and v : V to say
“v is in the vector space V ”. Similarly, we will use F : V →W to say “F is a function from the
space V to the space W”. When referring to the value of a function F : V → W , we will use
F = (v 7→ w). Whether → refers to a function, a linear map, or some other type of morphism is
usually left to the prose; as is the distinction as to whether R and V are rings, modules, vector
spaces, or some other abstract object. In some cases we will write F : V →R W to indicate that
a linear map or algebra morphism is linear with respect to the ring R.

For functions of two variables, we have two choices of notation; F : U × V →W or F : U →
(V →W), where we will omit the parentheses. This second “curried”7 interpretation may seem
unusual, but it is convenient for us for reasons that eventually become apparent in eq. (8.2).
Similarly, we shall use F = (u 7→ v 7→ w) for writing the values of such functions, and use f(u, v)

and f(u)(v) interchangeably.
Note in particular that for commutative R, an R-bilinear map F : U × V → W can be

considered as an R-linear map from U to the space of R-linear maps from V to W , which is the
F : U → V →W spelling.

2.2.3. Quadratic Forms

In defining G(V) for an R-module V , we have omitted an important property of the V ; R-modules
do not provide their elements v : V with a dot product v · w, which we need to write eq. (2.4).
The natural generalization would be to write G(V,B) which provides a (symmetric) bilinear map
B : V → V → R; one that is linear in both arguments. Indeed, [15] uses this definition, but labels
the resulting construction a “‘quantum’ Clifford Algebra”.

Instead, most definitions choose to provide a “quadratic form” Q : V → R, which according to8

[16, §3.4], satisfies Q(rm) = r2Q(m), and additionally is such that the polar form polar[Q](x, y) :=

Q(x + y) − Q(x) − Q(y) is bilinear. We recover the v · w product from this definition as
1
2 polar[Q](v, w); we call this the “associated bilinear form”, and it is useful because it satisfies
v · v = Q(v).

When we write G(Rp,q,r) above9, we are interpreting the tables in fig. 2.5 as bilinear forms Bp,q,r,
then defining Qp,q,r(v) := Bp,q,r(v, v); so for instance, Q3,0,0(vxex + vyey + vzez) := v2x + v2y + v2z .
For the majority of the rest of this thesis we shall concern ourselves with general quadratic forms

7So-named in reference to the mathematician Haskell Curry.
8In fact this definition generalizes further to semi-modules (those without negation), according to [17] and

[mathlib#14303], instead requiring Q(x+y) = Q(x)+Q(y)+BC(x, y), where BC is some (possibly non-unique)
“companion” bilinear form; but the author is not aware of this generalization being considered in the context of
Clifford algebras.

9which some other authors write C`(p, q, r).

13

Chapter 2. Mathematical background

instead of this special case, and so shall write10 G(V,Q).

2.2.4. The tensor algebra, T (V)

Our last stepping stone we will need is that of the tensor algebra, which makes explicit the notion
of “inventing” the new exy symbols as we did in section 2.1.1. The tensor algebra starts with
an R-module V , and augments it with an R-bilinear multiplication (normally written u⊗ v, but
we shall simply write uv) to obtain the R-algebra T (V). Effectively, this algebra lets us write
down any products of vectors such as 1 + u + v2, and tells us that we can only consider two
elements equal if they are equal under the axioms of non-commutative rings. It is the largest
algebra generated by V with this property. Contrasting with the product in section 2.1.1, the
product in the tensor algebra has no rule about simplifying v2.

2.2.5. A definition of G(V,Q)

We now have all the pieces we need to describe a Clifford algebra. Starting with an R-module
V and a quadratic form Q : R→ V , we define G(V,Q) by starting with T (V), and introducing
the extra rule that when determining if two elements are equal, we can apply the rule v2 = Q(v).
The multiplication we obtain is none other than the geometric product from section 2.1.2.

As an example of applying this rule, we can find that

wv = (w + v)2 − w2 − v2 − vw (2.12)

= Q(w + v)−Q(w)−Q(v)− vw (2.13)

= polar[Q](v, w)− vw, (2.14)

which is the more abstract version of eq. (2.4), replacing 2v ·w with polar[Q](v, w). This is helpful
for generality, as by skipping the associated bilinear form from section 2.2.3 entirely, we avoid
requiring that our scalars are divisible by 2.

More formally, we say we are taking a quotient by the (closure of the) relation v2 = Q(v). The
reader will be spared the full formality of this definition for now, as we will have plenty of time
for it later. As T (V) is an R-algebra, this quotient, G(V,Q), is also an R-algebra.

2.2.6. The exterior algebra,
∧
(V)

While section 2.2.5 provides us the geometric product, it does not provide a wedge product. A
partial solution to this is to work with the exterior algebra,

∧
(V). This is in fact just a special

case of the Clifford algebra, where instead of requiring v2 = Q(v) we take v2 = 0 (and so Q := 0);
that is, we can consider

∧
(V) and G(V, 0) identical.

10This notation could be argued both to be unnecessarily verbose (as the module V is implied in the choice of
Q, so we could write G(Q)) and insufficiently precise (as the base ring R is left implicit, so we should write
GR(V,Q)). In the rare cases in this thesis where the base ring is not R, it can be inferred from adjacent ⊗R or
∼=R notation.

14

Chapter 2. Mathematical background

This
∧
(V) gives us the wedge product as the regular product, but in the formulation in

section 2.1, we would like to have access to both the geometric and wedge products of G(V,Q)

at the same time. Defining the wedge product on G(V,Q) amounts to choosing an isomorphism
to_ext : G(V,Q) ∼=

∧
(V) that sends vectors to vectors, with which we can write

x ∧ y = to_ext−1(to_ext(x) to_ext(y)). (2.15)

We shall explore how this isomorphism is constructed in section 8.4.
The exterior algebra also provides us with the notion of grade selection used in eq. (2.5); more

formally, we say that
∧
(V) is an N-graded ring, a concept that will be explained further in

chapter 6. To recover the “grade selection” operator on G(V,Q) from geometric algebra11, we
must once again transport along to_ext.

11Which unless Q = 0 does not qualify as an N-graded ring.

15

3
Software

Programmers are always surrounded by complexity; we
cannot avoid it. […] If our basic tool, the language
in which we design and code our programs, is also
complicated, the language itself becomes part of the
problem rather than part of its solution.

(C. A. R. Hoare)

It appears to be a rite of passage for theses about geometric algebra to introduce a new software
library; [18, §4] introduces LibCGA, [19, §A] introduces Versor, and [20] is devoted in its entirety
to Gaigen. Section 3.1 outlines one of the reasons that developing such software is appealing;
there are many ways to encode the structure of geometric algebra into the type system of different
programming languages. The author’s original intent was to avoid perpetuating this trend,
instead adopting and contributing new features to existing geometric algebra packages; notably
the numeric package clifford (section 3.2) and the symbolic package galgebra (section 3.3),
both for the Python programming language.

Ultimately, it was the disconnect between the structure of these libraries and the mathematics
they encapsulate that motivated the main direction of this thesis. This section outlines some of
these challenges, and introduces the reader to a rather unusual kind of “programming” language;
that of formal mathematics (section 3.4). In particular, it provides an introduction to one specific
language of this kind, the Lean theorem prover; from which many code samples will be presented
throughout the rest of this thesis.

3.1. Typing considerations
Writing software libraries for Geometric Algebra presents an unusual challenge—such libraries
should not only provide algorithms, but data types which look, feel, and perform like the numeric
types native to the programming language they target. Programming languages today already
have native support for a limited set of algebras; namely the real numbers G(R0) and often the

16

Chapter 3. Software

complex numbers G(R0,1); but support typically stops there.
It is worth expanding a little on the concept of “types”. In the language of Type Theory, every

object or “term” has an associated “type”, which defines its meaning and behavior: for instance,
in Python the term 42 has type int. Exactly how granular the types are is up to the language, a
common example of which is whether the natural numbers N are considered to be the same type
as the integers Z. Ascription of types to terms is therefore mathematically subjective, but it is an
important part of library design—types are used in the world of software engineering to associate
operators and memory layouts to terms.

Just as complex numbers and real numbers can be considered to have different types, mul-
tivectors from distinct algebras can be too. But algebras themselves can be considered terms,
perhaps of type Algebra. This means that the type of our multivector is a function of the algebra
it belongs to—in the language of type theory, it is a “dependent type”. As an example working in
G(R2), we could say that the term 1 + e12 has type Multivector G(R2).

Dependent types live on the border between software engineering and computer science, in
that they are hard to work with in languages known for performance, and easy to work with in
languages which are not. Existing GA implementations in the former group deal with this in
multiple ways:

• Type erasure. The type of multivectors is unified across all algebra, and each multivector
term carries around data about its associated algebra. In type theory, we say this is a
“sigma type”. In implementations, this comes with memory and speed costs.

• Code generation. The generator works with the algebra terms, and emits code which
declares specific multivector types, via either

– Source code generation, which often supports multiple target languages from a single
generator (Garamon [21], ganja.js [22], Gaalop [23])

– Compile-time generation, using mechanisms like C++ templates where a limited
meta-language allows restricted manipulation of the algebra objects. (GATL [24],
GAL [25], versor [19])

• Runtime types, often via just-in-time compilation so as not to sacrifice efficiency (ganja.js
[22])

3.2. Numeric
As a short example of how these typing considerations manifest in practice, let us look at clifford
[26]; a GA package for the Python programming language for numeric computation in arbitrary
algebras. While the package has been around since 2006, sizeable contributions have been made
to it as part of the early work in this thesis. The source code is publicly available on GitHub,
and the package is periodically released to the Python Package Index (PyPI) from which it can
be installed with pip install clifford.

17

Chapter 3. Software

clifford uses one of the simplest representations of a multivector—a dense numpy [27] array of
the 2n coefficients of the basis blades, where n is the dimension of the algebra. Each multivector
carries around a reference to the algebra it belongs to, in what was described as the “type erasure”
approach in section 3.1. The library encodes the geometric product as a product with a constant
tensor G, (ab)j =

∑
i,k aiGijkbk, where i, j, k are the indices of each basis blade. This tensor is

stored sparsely, as for an n-dimensional algebra only 22n of its 23n elements are non-zero. The
tensors for the outer (G∧) product is simple to express in terms of G via the expression in eq. (2.5)
as

G∧
ijk =

Gijk if i+ k = j

0 otherwise
(3.1)

This approach is neither novel nor efficient compared to other more sophisticated approaches like
[21], but it is simple, and is performant enough for small algebras and pedagogical use cases.

At any rate, performance considerations would be dominated by the overhead of the Python
programming language, which is interpreted rather than compiled to native machine code. In
general, the way this problem is solved in Python is to delegate performance-critical loops to C
code. An example of this is multivector addition, which calls into the numpy package to perform
elementwise addition. To make the geometric product efficient, a more sophisticated approach is
used. For this, clifford leverages the numba [28] Python package, which uses LLVM to perform
just-in-time compilation (or JIT-ing) of Python code into machine code the first time it is run.
This is used to compile a custom product function for each algebra.

3.2.1. Accelerator compatibility

It is this numba integration within clifford where the design of the type system becomes complex;
at least, after the substantial redesign performed by the author described in this section.

As a simple example, let us imagine we are writing the rotor_between_planes function from
the clifford library for the first time. Our pure-Python implementation might start as shown in
fig. 3.1a, where we use * as the geometric product, and .normal() to normalize the magnitude of
the resulting rotor to 1.

Before the overhaul, enabling JIT-compilation would require a total rewrite of the function
into the form shown in fig. 3.1b. Essentially, there were two entirely different interfaces to
the library—a high level interface that worked on MultiVector objects and convenient operator,
and a low-level interface for only G(R4,1) that worked on raw numpy arrays of blade coefficients.
Converting a regular function to a JIT-ed function required swapping the implementation to use
the low-level interface, and then writing a wrapper function to re-expose the high-level interface
over the top—resulting in twice as many functions to keep track of. For an algorithm built up of
multiple functions, as shown on the left of fig. 3.2, JIT-ing the outermost function resulting in
this duplication of every function in the call graph, as shown on the right of fig. 3.2.

18

Chapter 3. Software

This is at odds with one of the key selling points of numba, which according to the project
website is that “[the user can] Just apply one of the Numba decorators to [their] Python function,
and Numba does the rest”. The difficulty here is that numba does not have any knowledge of the
type of a multivector, which clifford works around by dropping down to the level of coefficient
arrays, objects which numba does know the type of.

Thankfully, numba includes an extension mechanism to teach it about new types, which after
substantial effort, enabled writing code in the style of fig. 3.1c. The core of this extension process
is to define a mapping that determines the appropriate numba type for a pure-Python object.
Often, these types are parametric; for instance, an array of integers would have type ndarray

in Python, but would have type Array(int64) in numba (fig. 3.3c)—when mapping into numba,
parts of the value are lifted into the type. For clifford.Layout objects (that is, the algebra itself,
G(· · ·)), we take the rather unorthodox approach of pushing the entirety of the pure-Python value
into the numba type, leaving the numba value completely void of data (fig. 3.3b)! This makes it
impossible to construct new algebras within JIT-ed code, but this is rarely a relevant limitation.
With LayoutType defined, the rest of the design falls out quite simply—a MultiVectorType is

def rotor_between_planes(P1, P2):

return (1 - (P2 * P1)).normal()

(a) Pure-Python implementation

@numba.jit

def _rotor_between_planes_val(P1_val, P2_val):

P1_P2_val = -gp_val(P1_val, P2_val)

P1_P2_val[0] += 1 # scalar part

return norm_val(P1_P2_val)

def rotor_between_planes(P1, P2):

rotor_val = _rotor_between_planes_val(

P1.value, P2.value)

return MultiVector(rotor_val)

(b) Old method of JIT-ing

@numba.jit

def rotor_between_planes(P1, P2):

return (1 - (P2 * P1)).normal()

(c) New method of JIT-ing

Figure 3.1.: Comparison of implementations showing improvements to the JIT-ing interface

some_larger_algorithm

rotor_between_planes

*

.normal

_some_larger_algorithm_val

_rotor_between_planes_val

_norm_val

_gp_val

Figure 3.2.: The call-graph of a pure-Python algorithm in the style of fig. 3.1a, shown in red, vs
the same algorithm JIT-ed in the old style of fig. 3.1b, shown in blue.
With the changes to clifford that enable fig. 3.1c, all of the dashed elements are handled
automatically by numba, rather than having to be written by hand.

19

Chapter 3. Software

parametrized by its layout and the scalar type of its coefficients (fig. 3.3a).
With the types in place, the remaining work was to: provide “boxing” and “unboxing” functions

written in LLVM assembly to convert between Python objects and the new types; to hook up the
operators like ^ and | to perform the appropriate GA operations; and to clean up the tens of
functions written in the style of fig. 3.1b to look like fig. 3.1c, a step which removed hundreds of
lines of code.

MultiVector

layout

value

Layout

blade_order

blade_names

mul_table

numpy.ndarray

dtype

data

…

(a)

(b)

(c)

MultiVectorType

layout_type

value_type

MultiVectorModel

layout

value

LayoutType

layout
LayoutModel

numba.Array

dtype

…

numba.ArrayModel

data

…

Pure Python Type information Run-time data

Numba

Figure 3.3.: The architecture of the type system interfacing clifford and numba.
Each rounded box shows an object, with the rectangles within it listing its fields. Arrows
from a field point to the type of value it holds. Adding a new type to numba requires two
pieces—compile-time information about the type itself, and run-time information about its
layout in memory. The array types shown in the last row, fig. 3.3c, are not part of clifford,
but are included to illustrate how numba handles other types—in the case, the fields are split
between the compilation and runtime.

3.3. Symbolic
While for engineering applications, numerical computation is often sufficient, symbolic computation
using computer algebra packages is invaluable in a research setting, as it provides a mechanism
for checking results. Notable example of such systems are Axiom, Maple, Magma, Mathematica,

20

Chapter 3. Software

and SageMath.
One part of SageMath is sympy [29], the canonical Python package for performing symbolic

computing, which covers a sprawling range of fields from combinatorics to quantum physics.
Notably absent is GA—which in fact was present until its removal in 2015 in part due to lack
of communication between its developer and the other sympy maintainers. Thankfully, work
continued in the galgebra [30] Python package. As with section 3.2, significant development of
this package has taken place as part of the early work in this thesis.

Under the hood, galgebra works by creating a unique sympy.Symbol for each basis blade, and
then multivectors are stored as algebraic expressions of their coefficients. Multiplication is
essentially performed in the same way as clifford, except instead of a numeric tensor, a lookup
table mapping two basis blades to their product is used. What sets galgebra apart from clifford

is its ability to work in arbitrary, symbolic, and even curvilinear metrics.
As well as an explorative tool, symbolic computations have one more benefit—an algorithm

can be symbolically optimized, and then the resulting expression to generate code generation for
a variety of languages. This is the entire premise behind Gaalop [23], but it suffers from inventing
its own GA-exclusive frontend rather than integrating with existing tools.

3.3.1. Example: multivector derivatives

Prior to the author’s work, galgebra supported only two differentiation modes: differentiation by
a scalar, and the usual vector calculus operators obtained by differentiating by a vector. After
a complete overhaul of its formerly-untested differential operator framework, support for the
multivector derivative characterized by [14, §2, eq. (2.13)] was implemented. Listing 3.4 shows it
in action.

Note that the expressions produced by galgebra are in terms of basis blade coefficients, and do
not generalize across different algebra dimensions (the 3 would be n for a generic algebra). This
tool is therefore primarily useful for checking derivatives when applied to a particular problem,
rather than for computing derivatives from start to finish.

21

Chapter 3. Software

>>> # create the algebra

>>> from galgebra.ga import Ga

>>> g = Ga('e_x e_y e_z', g=[1, 1, 1])

>>> # create symbolic blades

>>> a = g.mv('a', 'vector'); a

a = axex + ayey + azez
>>> B = g.mv('B', 'bivector'); B

B = Bxyex ∧ ey +Bxzex ∧ ez +Byzey ∧ ez

(a) Creating symbolic blades in G(R3)

>>> # create a differential operator

>>> dB = g.make_grad(B); dB

−ex ∧ ey
∂

∂Bxy
− ex ∧ ez

∂

∂Bxz
− ey ∧ ez

∂

∂Byz

>>> # apply it to an expression, and check the result

>>> dB * (B*a)

3axex + 3ayey + 3azez
>>> dB * (B*a) == 3 * a

True

(b) Using a derivative operator ∇B

Listing 3.4.: Example usage of the galgebra package
Note that unlike clifford, output is shown in LATEX in compatible environments like Jupyter
Notebooks.

3.3.2. Flexibility concerns

The coordinate-based representation in section 3.3.1 is a symptom of a lack of flexibility in the
design of algebra within sympy. There are various other ways in which the experience of working
with galgebra multivectors is much worse than the usual experience when working with real
numbers. To understand why, it helps to understand how various other number systems are
represented in sympy.

In listing 3.5, some sympy code is shown for each of four common “number” types that constructs
an expression in two symbols and inspects its representation. Under the hood, sympy is building
an expression tree, where each node is an operator, and the terminal nodes are either variables
or constants. show_repr is displaying that tree in the form of nested function calls. For real
(listing 3.5a) and complex (listing 3.5b) numbers, the behavior is exactly the same; in both
cases, the operator nodes are generic Mul and Add nodes1, For matrices (listing 3.5c), the story
is different; not only do we need to use an entirely new MatrixSymbol type, but the expression
we end up with is built out of a new set of operator types that are not the same as those in
listings 3.5a and 3.5b. For quaternions (listing 3.5d), the outlook is worrying; there is no means
to create a quaternion-valued symbol at all, and instead we must assemble a quaternion from
symbolic coefficients. As a result, what we get back is an expression for each coefficient (which
we did not see for real and imaginary parts in listing 3.5b).

This coordinate-based approach to symbolic algebra used by sympy.Quaternion is particularly
inconvenient when it comes to checking algebraic results, as can be seen in listing 3.6; the results
produced by sympy are always in the fully-expanded form, which in the cases in listing 3.6 is far
more verbose than the output shown in the captions.

It is unfortunate then that this is effectively the same as the approach used by galgebra, and
that like sympy.Quaternion, galgebra.Mv (the multivector type) is in many ways a “second class
citizen” in sympy as a result: functions like sympy.exp or sympy.diff cannot be used on galgebras

1sympy does not have a Sub node, so x− y is converted to x+ (−1)y.

22

Chapter 3. Software

>>> x, y = symbols('x y', real=True)

>>> expr = (x + y)*(x - y); expr

(x− y)(x+ y)
>>> show_repr(expr)

Mul(Add(x, Mul(Integer(-1), y)),
Add(x, y))

(a) Real numbers

>>> x, y = symbols('x y', complex=True)

>>> expr = (x + y)*(x - y); expr

(x− y)(x+ y)
>>> show_repr(expr)

Mul(Add(x, Mul(Integer(-1), y)),
Add(x, y))

(b) Complex numbers

>>> m, n = symbols('m n')

>>> X = MatrixSymbol('X', m, n)

>>> Y = MatrixSymbol('Y', m, n)

>>> expr = (X - Y)*(X + Y).T; expr

(X − Y)(XT + Y T)
>>> show_repr(expr)

MatMul(MatAdd(X, MatMul(Integer(-1), Y)),

MatAdd(Transpose(X), Transpose(Y)))

(c) Matrices

>>> x, xi, xj, xk = symbols('x x_i x_j x_k'); xq = Quaternion(x, xi, xj, xk)

>>> y, yi, yj, yk = symbols('y y_i y_j y_k'); yq = Quaternion(y, yi, yj, yk)

>>> expr = xq * yq; expr

(xy − xiyi − xjyj − xkyk) + (xyi + xiy + xjyk − xkyj) i
+(xyj − xiyk + xjy + xkyi) j + (xyk + xiyj − xjyi + xky)

>>> show_repr(expr)

Quaternion(Add(Mul(x, y), Mul(Integer(-1), xi, yi), Mul(Integer(-1), xj, yj), Mul(Integer(-1), xk, yk)),
Add(Mul(x, yi), Mul(xi, y), Mul(xj, yk), Mul(Integer(-1), xk, yj)),

Add(Mul(x, yj), Mul(Integer(-1), xi, yk), Mul(xj, y), Mul(xk, yi)),
Add(Mul(x, yk), Mul(xi, yj), Mul(Integer(-1), xj, yi), Mul(xk, y)))

(d) Quaternions

Listing 3.5.: Comparison of expression tree representations for various number systems in sympy.
While real (a) and complex (b) numbers use the same objects for their representation,
matrices (c) have to reinvent addition, multiplication, and Symbol. Quaternions (d) do not
support symbolic operators at all, only coefficient-wise operations.

>>> (xq * xq * xq**-1 * yq).simplify()

(xy − xiyi − xjyj − xkyk)

+ (xyi + xiy + xjyk − xkyj) i
+ (xyj − xiyk + xjy + xkyi) j

+ (xyk + xiyj − xjyi + xky) k

(a) Showing that xqxqx
−1
q yq = xqyq

>>> def q_diff(Φ, dq): # similar to ∇Φ

... ℍ = Quaternion

... I, J, K = ℍ(0,1,0,0), ℍ(0,0,1,0), ℍ(0,0,0,1)

... return (Φ.diff(dq.a) + I*Φ.diff(dq.b)

... + J*Φ.diff(dq.c) + K*Φ.diff(dq.d))

>>> q_diff(xq*yq, xq)

−2y +−2yii+−2yjj +−2ykk

(b) Showing that ∇xq (xqyq) = −2yq

Listing 3.6.: The cost of coefficient-wise representations
The variables xq and yq are as in listing 3.5. While the results are still correct, they are not
in the simplified form we wanted them, because that form cannot even be represented in
sympy.

23

Chapter 3. Software

multivector, as these functions expect an expression, not a container holding multiple expressions.
Even integrating galgebra.Mv objects with the sympy LATEXprinter required a substantial amount
of work by the author to both sympy and galgebra.

While it may seem that the approach used by matrices (listing 3.5c) in sympy would be more
desirable for galgebra.Mv, this is substantially more difficult than it appears. Not only would
we have to create MvAdd, MvMul, and MvSymbol classes, but due to the ad-hoc nature of sympy’s
dynamic dispatch (the process of choosing which behavior a function should have based on the
types of its arguments) means that we would have to patch around 100 places across sympy2 to
add special handling for these new types. Our prospects look even worse if we want to support
matrices of multivectors, as we would have to do the same thing all over again for a MatMvAdd;
the design just doesn’t compose.

3.3.3. Correctness issues

Even if we did take on the enormous task of building matrix-style support for multivectors into
sympy, we would likely find ourselves faced with matrix-style rough edges; which is to say, if you
add 100 special cases across the codebase, there is a very large surface for subtle bugs.

To demonstrate this, we can look at an example of working with determinants of matrices in
sympy, as in listing 3.7. We can ask sympy to determine whether x = y is true by entering Eq(x, y).
In some cases, sympy automatically “evaluates” our expressions, performing hard-coded and
somewhat arbitrary transformations. For instance, listings 3.7b and 3.7c both end up dispatching
to MatMul._eval_determinant, which knows how to evaluate a variety of determinant expressions.
The ability of this mechanism stops there though, and we have to invoke the .simplify() method
to fully demonstrate the expected result in listing 3.7c. Even .simplify() can go so far; when
faced with the “Weinstein–Aronszajn identity” in listings 3.7d and 3.7e on rectangular or even
square matrices, we hit an exception somewhere within sympy’s internals.

Bugs of course happen in software, and we are fortunate here that the resulting behavior was
a crash and not a wrong answer. In this particular case, the bug was fixed in [sympy#20691]
in the sympy 1.9 release. However, the kind of bugs that arise are in some sense a function of
the foundations and language that we choose to build upon. There is usually a trade-off to be
made here: using languages with manual memory management can bring better performance, but
risks memory access bugs; using languages with weak typing can make development faster, but
risks type-related bugs; using untyped numerals for physical calculations is more compatible with
other libraries, but risks unit- and dimension- related bugs3. In the case of sympy, we are, in the
author’s opinion, using a framework with a fragile expression model built atop of a language that
is ill-equipped to verify that our expressions and simplifications are well-formed.

sympy is of course just one of many symbolic software packages, and other systems may well
have less error-prone and extensible architectures. Fundamentally though, all such tools are still

2Estimated by searching for MatAdd and is_Matrix in the sympy source code.
3For which the classic example is the loss of the Mars Climate Orbiter, [31].

24

Chapter 3. Software

>>> m, n = symbols('m, n')

>>> A = MatrixSymbol('A', n, n)

>>> B = MatrixSymbol('B', n, n)

>>> P = MatrixSymbol('P', m, n)

>>> Q = MatrixSymbol('Q', n, m)

(a) Initialization of symbols for square (A,B : Rn×n) and rectangular (P : Rm×n, Q : Rn×m) matrices

>>> Eq(det(A*B), det(A)*det(B))

True

(b) detAB = detAdetB

>>> Eq(det(A*B*A.inv()), det(B))∣∣A−1
∣∣ |A| |B| = |B|

>>> Eq(det(A*B*A.inv()), det(B)).simplify()

True

(c) detABA−1 = detB

>>> I = Identity

>>> Eq(det(I(m) + P*Q), det(I(n) + Q*P))

|I+ PQ| = |I+QP |
>>> Eq(det(I(m) + P*Q),

... det(I(n) + Q*P)).simplify()

NonSquareMatrixError:

Det of a non-square matrix

(d) det(Im + PQ) = det(In +QP)

>>> I = Identity

>>> Eq(det(I(n) + A*B), det(I(n) + B*A))

|I+AB| = |I+BA|
>>> Eq(det(I(n) + A*B),

... det(I(n) + B*A)).simplify()

AttributeError:

'Mul' object has no attribute 'shape'

(e) restriction of (d) to square matrices

Listing 3.7.: Manipulating matrix determinants in sympy 1.8
After declaring some matrices in (a), sympy automatically reduces simple statements like
(b) to their truthiness. For more complex statements like (c), we must invoke .simplify().
On the “Weinstein–Aronszajn identity” in (d), sympy internally creates an illegal expression
and crashes. Acquiescing to the error message produces an even more opaque error in (e).

vulnerable in a crucial way: even if we find a system that can be flexibly extended to support
GA, designed in a way that makes constructing nonsensical expressions impossible, at some point
we will have to teach it GA-specific simplification rules, and it will be entirely on us to promise
that they are mathematically correct. If we want our system to help us with “mathematical”
correctness, it needs to understand proofs; but once our system does that, it’s no longer a symbolic
algebra system, but a full-fledged theorem prover.

3.4. Formal
Parts of this section are extracted from §3-5 of “Formalizing Geometric Algebra
in Lean” [10], instead of appearing with the main part of that work in chapter 9.

Theorem proving software must do more than simply encode and verify mathematical truth; it
must make doing so ergonomic for the user, and minimize the inevitable friction when converting
a pen and paper argument into a machine-readable one. The typical workflow for this conversion
is split into two parts—translating the theorem statement, and then translating the proof.

The use of dependent type theory (as opposed to the set theory typically used by mathematicians)
helps with the theorem statements, as it provides a mechanism to reject nonsensical statements
like 1 = (2 < 3) (with a type error like “2 < 3 is a Prop, expected an N”). Flexible notation is

25

Chapter 3. Software

also valuable in theorem statements, as mathematics is symbol-heavy; for instance, being able to
write

∑
instead of “sum” makes it easier to align paper with screen.

Where the software can really shine though is in the proofs, via interactive and automated
theorem proving. The former is about showing unresolved “goals” as the proof progresses, to help
the user as they write and to guide them what to do next. The latter is invaluable for discharging
goals the user views as trivial, such as (a+ b) + c = (b+ c) + a—while the user could manually
apply associativity and commutativity lemmas, automation prevents them having to waste time
thinking about this. The scale of automation can vary from filling in the blanks (converting a
proof of x < x+ 1 into a proof of 2 < 3), to performing a CAS-like simplification, to applying
a sophisticated machine-learning model [32; 33]. Since automation is typically implemented as
proof-generation, it doesn’t impact the trustworthiness of the prover—the generated proof is
subject to the same mechanical scrutiny as a hand-written one. The line between interactive and
automated is frequently blurred.

The Lean language used in this thesis is just one of many theorem proving languages, and
while it has all of the properties described above, it is not unique in that it does so. Its use
of dependent types is very similar to Coq, and its heavy use of notation similar to Agda. Its
automation tools are currently less powerful than those of Isabelle/HOL, without an equivalent
to Isabelle/HOL’s powerful sledgehammer tactic [34]; however, it is increasingly catching up with
tactics like aesop[35].

Lean underwent a substantial upgrade during the writing of this thesis, from Lean 3 to Lean
4. This came with many improvements, though arguably in the long run the most important
change is that Lean 4 is now actively developed4 and funded, and so will continue to improve.
For consistency with already-published papers, this thesis uses a mixture of both languages. The
languages are thankfully very similar, but for clarity, they will be presented in different-styled
boxes, as

33-- this is Lean 3 code 44-- this is Lean 4 code

or inline, as lean_three_code and leanFourCode.

3.4.1. An introduction to the Lean theorem prover

In this section, we will give a very brief introduction to the Lean language, in order to aid with
reading the fragments of Lean code5 in the rest of this thesis. The Lean community website
provides a much more in-depth set of reference materials [36], as well as an in-browser Lean 4
environment at http://live.lean-lang.org. Most of the code samples will be presented as Lean
3, but when the Lean 4 code is not identical, both will be shown side by side.

We’ll start with a simple definition, showing how to define a value with a given name and type.

4Even at the beginning of the work in this thesis, Lean 3 as a language was effectively in “maintenance mode”,
receiving no new language features.

5Note that Lean source code makes heavy use of non-ASCII unicode characters, which some PDF readers are
unable to copy to the clipboard faithfully.

26

http://live.lean-lang.org

Chapter 3. Software

Here, we define the name two to refer to the natural number (ℕ) 2:

33
-- name : type := value (or "term")

def two : ℕ := 2

Function types are declared with a → separating the types of their inputs and outputs. Function
values introduce their variable binders using a λ (or fun in Lean 4) followed by variable names.
Here, we define a function that takes a natural number and doubles it:

33def double : ℕ → ℕ := λ a, two * a 44def double : ℕ → ℕ := fun a => two * a

For convenience, the language lets us introduce the variable and declare its type in one place; so
we could also have written this:

33def double (a : ℕ) : ℕ := two * a

Function application is notated with juxtaposition, which has higher precedence than most
operators. Note that sometimes a $ (or <| in Lean 4) is used in place of parentheses.

33

/- examples of function application -/

def four := double 2

def five := double 2 + 1

def six := double (2 + 1)

def six' := double $ 2 + 1

What makes Lean a language for theorem proving, and not just a regular functional programming
language, is its Prop type, which holds mathematical statements.

33
def likely : Prop := ∃ x : ℕ, x + x = 2

def unlikely : Prop := ∃ x : ℕ, x*x = 2

Mathematical statements are themselves types (are permitted to appear to the right of a colon),
whose values constitute their proofs. We use the keyword lemma or theorem instead of def when
providing proofs, but the syntax is otherwise identical:

33
lemma likely_proof : likely := ⟨1, rfl⟩

lemma unlikely_proof : unlikely := sorry

We can prove likely by claiming that 1 is a suitable x, and proving that 1 + 1 = 2 by definition
(rfl is a proof that a = a). However, while we are free to make the false statement unlikely,
Lean does not allow us to prove it. Instead, it grants us an escape with the sorry keyword, which
is used to mark proofs as omitted. Using sorry sets a contagious flag that marks a proof and all
its dependencies as incomplete, ensuring that the user eventually goes back to fill in the missing
proof. In this thesis, we will often use sorry in code examples to indicate proofs not interesting
to the reader, but present in the formalization.

Usually we do not separate our statements and proof as we did for likely. The example below
shows a slightly longer proof, using our earlier definition of double:

27

Chapter 3. Software

33

lemma double_is_add_self :

∀ a, double a = a + a :=

begin

intro a, apply two_mul

end

44

lemma double_is_add_self :

∀ a, double a = a + a := by

intro a

apply two_mul

This can be read as a function, that takes a number a and emits a proof of a statement about
that specific a. This is what it means for Lean to be dependently-typed; the type of the result of
a function can depend on its input. When the inputs of a function are themselves proofs, this
concept of proofs as values leads naturally to the Howard-Curry correspondence; an implication
of the form P =⇒ Q is represented as a function that converts proofs of P into proofs of Q.

The second line of this proof enters tactic mode using the begin (respectively, by) keyword. Once
within this mode, tactics like intro and apply can be used. These tactics are often themselves
Lean programs, and this mode is what makes Lean an “interactive” theorem prover. When in
this mode, compatible text editors will show what is left to be proven after each tactic has been
applied.

The logical foundation of Lean is the Calculus of Inductive Constructions. The following
example demonstrates a typical inductive construction; an inductive type used to represent the
logical or of two propositions:

33

/-- a pedagogical copy of the built-in `or` -/

inductive my_or (P Q : Prop) : Prop

| left (p : P) : my_or

| right (q : Q) : my_or

This reads as “there are two ways to construct a proof of P ∨ Q; either by providing a proof
of P (my_or.left p), or by providing a proof of Q (my_or.right q)”. From this definition, Lean
provides us with an induction principle my_or.rec which allows this procedure to be reversed, as
“To prove6 P ∨Q→ R, it is sufficient to prove P → R and Q→ R”.

These “inductive” types are used to build almost every object needed in formalized mathematics
and computer science; examples include the integers, lists, logic operators, and existential
quantifiers. Sometimes we need one more fundamental building block, “quotient” types. These
allow associating an equivalence relation with a type, for instance to ensure that 1

2 = 2
4 . Lean

supports these too, and we will see more of them in section 9.3.1.

3.4.2. Revisiting the matrix examples

Armed with this new tool, let us revisit the matrix examples which caused sympy trouble in
listing 3.7.

In listing 3.8a we use the variables command, which declares up-front that we are going to
use the same function/theorem arguments in the rest of our examples, and we don’t want to
repeat them each time. Otherwise, the setup is pretty similar to listing 3.7a, except we had to

6Here and in Lean, ∨ is the logical disjunction, not the regressive product of GA.

28

Chapter 3. Software

be precise that the coefficients in our matrices are real. The use of fin n (the type of natural
numbers less than n) also indicates a typical practice when doing mathematics in Lean: be as
general as reasonably possible! While listing 3.8a works with m n : ℕ to keep the analogy with
listing 3.7a, the matrix type is defined over arbitrary index types7.

In listing 3.8b, we demonstrate the example command, which is like lemma but for a throwaway
result. Unlike in listing 3.7b the system does not check things for us for free, but the simp tactic
can prove it.

In listing 3.8c we see our first significant difference with listing 3.7c; we were forced to add
h : is_unit A (i.e. assume that the matrix A is invertible), otherwise the statement would not
have been true8, and our attempt to find the result in the library using library_search would
have failed.

For our final example in listing 3.8d, we find that Lean runs into the same issue as sympy; it also
doesn’t know about the “Weinstein–Aronszajn identity”. It is here that the difference with sympy

is most stark: we can teach Lean this result ourselves by providing a rigorous proof. The outline
of the proof we provide is written via the calc tactic, and represents the chain of equalities

det(I + PQ) = det

[
I −P
Q I

]
= det(I +QP). (3.2)

The {} braces then surround the proofs of each equality in this chain, where we invoke standard
results about determinants of block matrices.

While not the main topic of this thesis, working with matrices can be a great way for readers
with an engineering or software background to become familiar with Lean. To this end, the
author set out to formalize the often-cited “matrix cookbook” [38], both to use as a rosetta stone
to translate between informal mathematics and Lean, and as a way to evaluate the completeness
of Lean’s mathematics library (which we shall introduce very shortly in section 3.4.3). The
result can be found at https://github.com/eric-wieser/lean-matrix-cookbook, and contains a
mapping between the 550 numbered equations in [38], and mixture of formal statements (28% of
[38]) and proofs (20% of [38]), as shown in fig. 3.9. This isn’t particularly impressive coverage,
but it did motivate a number of contribution to the mathematics library; notably !![a, b; c, d]

notation for matrices [mathlib#14991], tactic machinery for expanding multiplications of this
form [mathlib#18711], and results about matrix norms and exponentials (which we shall revisit
in section 11.2.1).

7This turns out to be handy for things like the Kronecker product [mathlib#8560], where the matrix M ⊗N can
be indexed by product types, which still preserves the structure of the original indexing.

8Lean (or rather, mathlib) defines the inverse of a non-invertible matrix to be zero, to match the fact that in
general 0⁻¹ = 0 (for which some explanation can be found in [37]).

29

https://github.com/eric-wieser/lean-matrix-cookbook

Chapter 3. Software

33

variables (m n : ℕ)

variables (A B : matrix (fin n) (fin n) ℝ)

variables (P : matrix (fin m) (fin n) ℝ) (Q : matrix (fin n) (fin m) ℝ)

open matrix -- for the `det` function

open_locale matrix -- for `⬝` notation

(a) Initialization of variables for square (A,B : Rn×n) and rectangular (P : Rm×n, Q : Rn×m) matrices

33
example : det (A⬝B) = det A * det B :=

by simp

(b) detAB = detA detB

33
example (hA : is_unit A) : det (A⬝B⬝A⁻¹) = det B :=

by library_search Try this: matrix.det_conj h

(c) detABA−1 = detB (when A is invertible)

33

lemma matrix.det_one_plus_comm :

det (1 + P⬝Q) = det (1 + Q⬝P) :=

begin

calc det (1 + P⬝Q) = det (from_blocks 1 (-P) Q 1) : _

... = det (1 + Q⬝P) : _,

{ rw [det_from_blocks_one₂₂, neg_mul, sub_neg_eq_add] },

{ rw [det_from_blocks_one₁₁, mul_neg, sub_neg_eq_add] },

end

33

example :

det (1 + P⬝Q) = det (1 + Q⬝P) :=

by library_search

Try this: matrix.det_one_plus_comm

(d) det(Im + PQ) = det(In +QP)

Listing 3.8.: Manipulating matrix determinants in Lean
After declaring some matrices in (a), the simp “tactic” (b) can prove some simple statements.
For more complex statements like (c), we can search the library for the result with library_

search, and interactively discover the name of the result via “Try this” messages from the
editor. For the “Weinstein–Aronszajn identity” in (d), the result was not present (prior to
[mathlib#12767]), so we have to prove it first!

Basics

Derivatives

Inverses

Complex Matrices

Decompositions

Statistics

MV Dists.

Gaussians

Special Matrices

Functions and Operators

Figure 3.9.: Progress in formalizing the Matrix cookbook
Labels correspond to section titles in [38], and each vertical line is a theorem. Green boxes
represent proven, yellow stated, and red unstated theorems. Much of [38] is inaccessible due
to gaps in the calculus library.

30

Chapter 3. Software

3.4.3. Lean’s mathematical library

By itself, Lean is very much “batteries not included”. Its standard library is not opinionated on
whether you use it for mathematics or software verification, and as a result comes with little
beyond basic data types (e.g. int, list) and constructive logic. Notably, it does not contain
proofs of statements like “the integers form a ring”, nor even the definition of “ring” required to
make such a statement! Indeed, we told a slight lie in listing 3.8; the example does not work in
Lean by itself, as even matrix is not present in the standard library. This is not a short-coming
in Lean—it’s just a choice of division of responsibility.

The mathematically interesting statements come from mathlib, which is “a community-driven
effort to build a unified library of mathematics formalized in the Lean proof assistant” [39],
spanning topics like linear algebra, topology, and analysis. It is from here that our matrix is
defined, and that the proofs for listing 3.8c was automatically found. The library is constantly
growing [40], with over 300 contributors whose backgrounds are widely spread across both fields
and seniority, with valuable contributions coming from undergraduates and professors alike.
Perhaps a particularly notable property of mathlib is that one of its goals is to formalize the
entirety of a particular undergraduate mathematics curriculum [41].

The coherency and breadth of this library makes formalization work in Lean particularly
attractive, as new structures can often be built as a thin layer on top of existing structures.
Furthermore, it reduces the effort needed to bring formalizations in different branches of mathe-
matics together—for instance, in the process of formalizing statements about the wedge product
in this work (section 9.3.5), the mathlib definition of the matrix determinant was shown to be an
alternating map [mathlib#5124] (which is discussed more in section 11.1).

Lean is not unique in having a standard library of mathematics—two obvious contenders are
the math-comp of Coq, and the stdlib of Agda. A thorough comparison of the three libraries
is beyond the scope of this work, but a very rough estimate of breadth and accessibility to new
users can be obtained by counting the lines of code, comments, and contributors, as shown in
table 3.10. This estimate is a poor one, as differences between the languages themselves could
easily result in the same idea taking a different number of lines to express—but it’s sufficient
to demonstrate that Lean is at least on-par with its competitors. For reference we also include
Hol-light and Isabelle’s “Archive of Formal Proofs” (AFP) in table 3.10, but as noted in the table
caption these are not suited for direct comparison.

The intent of this thesis is for its formalized results about Clifford algebras to not only interface
well with mathlib, but also for the majority of them to ultimately end up a part of it. Contributing
code into mathlib ensures its ongoing maintenance [42], and has numerous advantages: community
review by Lean experts, automated detection of bad practices by software tools, and generated
documentation published to the web. Perhaps most important though is that the community
as a whole takes on the responsibility of keeping our contributions compatible with the rest of

31

Chapter 3. Software

Language Library Source lines1 Comment lines1 Contributors2

Lean mathlib 388k 100k 159
Agda agda-stdlib 66.9k 20.4k 98
Coq math-comp 95.9k 7.6k 35
Hol-light3 707k 40.4k 8
Isabelle AFP4 4.26M 108k 386
1 Counted using the scc program.
2 According to git. Some projects do not record all authors here.
3 The standard library and language are hard to distinguish, so the metrics include

both.
4 The “Archive of Formal Proofs” is not a standard library but a collection of libraries,

and as such is larger but less interlinked.

Table 3.10.: Comparison of metrics between standard libraries of popular provers using data from
their GitHub repositories as of July 2021.

mathlib as it evolves9.
The quality bar for inclusion into mathlib is high, and as is common in software development,

the review process favors lots of small contributions over one giant contribution. In practice this
means it works best to develop larger formalizations outside mathlib, while in parallel continually
shifting parts of their foundations back into mathlib; this allows rapid iteration unimpeded by
reviewer delay, while still insuring against the formalization diverging irrecoverably from mathlib.

Throughout this thesis, the reader will find references of the form [mathlib#4430] or [math-
lib4#3840]. These refer to contributions to mathlib, which come in the form of GitHub “pull
requests”. The difference between “mathlib” and “mathlib4” is largely unimportant, and simply
reflects that the numbering was restarted for the move to Lean 4. The important difference is
that the italicized [mathlib#4430] indicates that contribution was initiated10 by the author, while
the upright [mathlib4#3840] indicates a contribution initiated by another contributor.

In the rest of this section, we will introduce the elementary parts of mathlib that will be essential
to formalizing Clifford algebras.

Algebraic structures

A central language feature used by mathlib in expressing algebraic structure is that of typeclasses
[39, section 4], which are used to equip types with canonical operators and properties of those
operators. Working with typeclasses breaks down into three parts; declaring them with the
class keyword, consuming them with [] around a typeclass name, and providing them with the
instance keyword.

A simple example is the typeclass semigroup M which equips the type M with the operator *

and an associativity axiom mul_assoc. The first part appears as

9This turned out to be invaluable when the entirety of mathlib was ported to a new version of Lean in 2023;
taking the contributions from this thesis with it.

10Most contributions are started by one author, but cleaned up in review by multiple other contributors.

32

Chapter 3. Software

33

class has_mul (G : Type*) :=

(mul : G → G → G)

infix * := has_mul.mul

33
class semigroup (G : Type*) extends has_mul G :=

(mul_assoc : ∀ a b c : G, a * b * c = a * (b * c))

With this typeclass in place, the second part allows us to write a theorem that applies to any
semigroup by writing [semigroup G] in our argument list, as we do in mul_assoc₂ below. This
tells Lean that whenever the mul_assoc₂ lemma is used on a type G, it should perform a typeclass
search for a term of type semigroup G. In turn, it means that inside mul_assoc₂ we have access to
the mul_assoc axiom of semigroups on G.

33
lemma mul_assoc₂ {G : Type*} [semigroup G] (a b c d : G) : a * (b * (c * d)) = ((a * b) * c) * d :=

by rw [mul_assoc, mul_assoc]

The final piece of the puzzle is how to inform the typeclass search that semigroup G is available
for a particular type G. To demonstrate this, we define a structure mul_opposite α that wraps
a single element of an arbitrary type α. Using the instance keyword, we then equip it with a
reversed multiplication structure, and express “For any type α such that α is itself a semigroup,
mul_opposite α is also a semigroup”. This method of “chaining” instances is central to the power
of typeclasses, and is used extensively by mathlib in situations like equipping a product of groups
with a group structure, or polynomials over a ring with a ring structure.

33

structure mul_opposite (α : Type*) := (x : α)

instance (α : Type*) [semigroup α] : semigroup (mul_opposite α) :=

{ mul := λ a b, ⟨b.x * a.x⟩,

mul_assoc := λ a b c, congr_arg mul_opposite.mk (mul_assoc c.x b.x a.x).symm }

Of particular interest to formalization of geometric algebra are the module R V and algebra R A

type-classes11, which respectively describe an R-module structure on V (roughly a vector space)
and an R-algebra structure on A. The former is of interest as it characterizes an arbitrary
vector space over which we wish to define the geometric algebra, while the latter is a minimum
requirement which our definition must meet in order to be considered useful.

Morphisms

In mathematics, it is frequently useful to talk about structure-preserving morphisms, such as
an R-linear map; a function f : A → B that f(x+ y) = f(x) + f(y) and ∀c : R, f(cx) = cf(x).
In mathlib this is represented by the type linear_map R A B that “bundles” the map itself with
proofs of the aforementioned properties. Since such bundled maps are quite common in mathlib,
shorthand notation is provided. Table 3.11 summarizes mathlib’s bundled maps [39, §4.1.2] and
their notations used in this thesis.
11Which themselves require at least [semiring R] [add_comm_monoid V] and [comm_semiring R] [semiring A], respec-

tively.

33

Chapter 3. Software

Notation Name Properties of the map f : A→ B
A →ₗ[R] B linear_map R A B Preserves +, 0, and scaling by R

A →ₐ[R] B alg_hom R A B Preserves +, ×, 1, 0, and scaling by R

A ≃ B equiv A B Has an associated map f−1 : B → A which is a left- and
right- inverse to f

A ≃ₗ[R] B linear_equiv R A B The properties of both A →ₗ[R] B and A ≃ B

A ≃ₐ[R] B alg_equiv R A B The properties of both A →ₐ[R] B and A ≃ B

Table 3.11.: Notation for homomorphisms and isomorphisms in mathlib

34

Part II.

Algebraic infrastructure

35

4
Scalar actions

The art of doing mathematics is finding that special
case that contains all the germs of generality.

(David Hilbert)

This chapter is a significantly extended version1 of “Scalar Actions in Lean’s
Mathlib” [11], notably including more recent work on right actions in section 4.7.1.

Scalar actions (a generalization of group actions) are ubiquitous in mathematics, usually
appearing under the guise of multiplication; we write x+yi when x, y : R but i : C, or xi+yj+zk

to scale unit vectors i, j, k : R3 by coefficients x, y, z : R, or qvq−1 to apply a transformation
represented by a quaternion q : H to a vector v : R3. Very few programming languages support
implicit multiplication-by-juxtaposition like this, but many allow this kind of expression to be
written using the regular multiplication operator, *. In programming languages for scientific
computing like Python or Julia, scalar actions fall out as a special case of “broadcasting” [27,
fig. 1e], and can be written with the regular multiplication operators. Sadly, Lean does not even
provide the luxury of using the regular multiplication with the * operator, as this requires the
two inputs and the output to all be of the same type2.

mathlib’s solution to these difficulties is to define a new scalar multiplication operator •. In this
chapter we explore through examples how Lean’s typeclasses are used to implement a flexible
range of scalar actions, illustrate some of the problems which come up when using them such as
compatibility of actions and non-definitionally-equal diamonds, and note how these problems can
be solved.

1The original had a very short page limit.
2While this restriction was lifted in Lean 4, it was preserved in mathlib, and as described in section 4.8, simply

opens a door to more problems.

36

Chapter 4. Scalar actions

4.1. Basic typeclasses
The typeclass3 we are most interested in this section is has_smul M α, which equips a type α

with an action by elements of M denoted m • a. Here, smul stands for scalar multiplication. In
practice, this is almost always used for monoid or group actions, which are actions that satisfies
the additional fields in mul_action M α:

33

class has_smul (M : Type*) (α : Type*) := (smul : M → α → α)

infixr ` • `:73 := has_smul.smul

class mul_action (M : Type*) (α : Type*) [monoid M] extends has_smul M α :=

(one_smul : ∀ a : α, (1 : M) • a = a)

(mul_smul : ∀ (x y : M) (a : α), (x * y) • a = x • y • a)

Note here that because we use [monoid M] instead of extends monoid M, we are stating that
mul_action M α requires M to already be equipped with a monoid structure, rather than allowing
mul_action M α to itself provide that structure.

mathlib extends these two typeclasses with a variety of additional axioms (i.e., fields holding
proofs) for when M and α are themselves equipped with extra structures, such as distributivity
over addition and actions by zero. Figure 4.1a shows the majority of these typeclasses, while
details of their fields can be found either in [39, section 5.1] or in the mathlib docs.

4.2. Elementary actions
Scalar actions can be roughly divided into two types: elementary actions which are intrinsic to a
particular family of types, and derived actions which operate elementwise on “bigger” types built
out of smaller types. We will start by giving some examples of the former.

4.2.1. Left multiplication

One of the simplest actions we can construct is that of left-multiplication, with a • b = a * b,
which mathlib provides as follows.

33instance has_mul.to_has_smul (α : Type*) [has_mul α] : has_smul α α := { smul := (*) }

As the properties of the multiplication on α becomes stronger, so do those of this scalar action
on α; for instance when we have monoid α we can deduce mul_action α α, and when we have
semiring α we can deduce module α α. Figure 4.1b shows these available left multiplication
structures, and the corresponding links with fig. 4.1a are shown with gray arrows.

3The mechanism introduced in section 3.4.3 for algebraic structures.

37

Chapter 4. Scalar actions

has_smul

mul_action smul_with_zero

mul_action_with_zerodistrib_mul_actionmul_distrib_mul_action

module

algebra

mul_semiring_action

has_mul

mul_zero_class monoid

monoid_with_zero

semiring

comm_semiring

(a) Scalar action typeclasses (b) Multiplicative typeclasses

Figure 4.1.: Hierarchy of scalar action and multiplicative typeclasses
Arrows indicate implications. Grey arrows indicate implied left-multiplication actions.

4.2.2. Repeated addition and subtraction

Another simple action we can construct is that of repeated addition (an instance of module ℕ α)
when α is a commutative additive monoid, which can be defined recursively for a natural number
as (0 : ℕ) • x = 0 and ∀ n : ℕ, (n + 1) • x = n • x + x. A similar approach can be used to
define a module ℤ α instance when α additionally forms an additive group. These are respectively
promoted to algebra ℕ α and algebra ℤ α structures when α forms a semiring or ring.

4.2.3. Application of endomorphisms and automorphisms

If we have an endomorphism or automorphism f : E (a structure-preserving map or equivalence,
respectively, from α to itself), then we can obtain a mul_action E α instance characterized by
f • x = f x; that is, the action is just function application. Depending on the endomorphism/au-
tomorphism in question, this mul_action instance can be promoted to a stronger type: for
instance, if it is an endomorphism of additive monoids, then this action can be promoted to
module (add_monoid.End α) α [mathlib4#8395]; if it is an automorphism of R-algebras, then this
action can be promoted to mul_semiring_action (A ≃ₐ[R] A) A [mathlib#8724]. In Lean, this
latter instance is defined as follows, where ($) is the function application operator.

33

instance alg_equiv.apply_mul_semiring_action : mul_semiring_action (A₁ ≃ₐ[R] A₁) A₁ :=

{ smul := ($),

smul_one := alg_equiv.map_one, smul_mul := alg_equiv.map_mul,

smul_zero := alg_equiv.map_zero, smul_add := alg_equiv.map_add,

one_smul := λ _, rfl, mul_smul := λ _ _ _, rfl }

Further instances were added to mathlib in [mathlib4#8396].
These actions act as important glue between the typeclass approach of formalizing actions that

we focus on in this section, and an alternate morphism-based approach. These two approaches are
shown in the columns of table 4.2. The typeclass approach is great for when a canonical action is
available; but when multiple possible actions are available, such as in representation theory, the

38

Chapter 4. Scalar actions

Typeclass Morphism

mul_action M α
mul_action.to_end_hom

−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−
mul_action.comp_hom

M →* function.End α

distrib_mul_action M A
distrib_mul_action.to_add_monoid_end

−−−−−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−−−−−
distrib_mul_action.comp_hom

M →* add_monoid.End A

mul_distrib_mul_action M A
mul_distrib_mul_action.to_monoid_end

−−−−−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−−−−−
mul_distrib_mul_action.comp_hom

M →* monoid.End A

module R M
module.to_monoid_end

−−−−−−−−−−−−⇀↽−−−−−−−−−−−−
module.comp_hom

R →+* add_monoid.End M

mul_semiring_action R S
mul_semiring_action.to_ring_hom

−−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−−
mul_semiring_action.comp_hom

R →* (S →+* S)

Table 4.2.: Morphism- vs typeclass-based representations of actions in mathlib, and translations
between them.
Note the composition implied by the comp_hom name is referring to composition with the
endomorphism action in section 4.2.3. For the rightwards arrows, a similar family of maps is
available for the automorphisms.

morphism approach is more predictable. To go to an entry in the right column from a term f

whose type is in the left column, we can build the action characterized by m • x = f m • x, where
the second • is the action induced from morphism application we just described. These “actions
after composing a function” are generated from the family of comp_hom definitions in the center
column. The rightwards arrows in table 4.2 show the more direct definitions [mathlib#8968] that
exist to go in the reverse direction.

4.3. Derived actions
A typical example of a module action might be that of a scalar R on the vector space R3 (fin 3

→ ℝ), which multiplies each component separately. After making the obvious generalization to
an arbitrary type α and index set ι, the easy way to write this down would be as follows, where
again we can provide a stronger module α (ι → α) if we know α forms a semiring.

33
instance function.has_smul (ι α : Type*) [has_mul α] : has_smul α (ι → α) :=

{ smul := λ r v, (λ i, r * v i) }

This definition is perfectly fine for the action we wanted, but we can still generalize it much
more. Consider now the action on matrices4 ι₁ → ι₂ → R by their coefficients R. We would like to
show has_smul R (ι₁ → ι₂ → R), but that doesn’t match the function.has_smul instance we just
defined. While we could obviously define this operation trivially just as we did there, we would
have to do so again if working with a vector of matrices or similar; this approach doesn’t scale.
Instead, we should be deriving an action of an arbitrary type M on ι → α from its action on α,
such that this exploits the chaining that occurs during typeclass search.

4though not quite mathlib’s spelling of them.

39

Chapter 4. Scalar actions

4.3.1. Function types, through their codomain

mathlib defines such a derived action on function types as follows:

33
instance function.has_smul' (ι M α : Type*) [has_smul M α] : has_smul M (ι → α) :=

{ smul := λ r v, (λ i, r • v i) }

This instance is strictly more general than the previous one—typeclass search will recover our
original has_smul α (ι → α) instance by setting M := α and finding has_smul α α from has_mul

.to_has_smul, but can also find the has_smul R (ι₁ → ι₂ → R) we wanted by setting M := R and
α := (ι₂ → R), and finding has_smul R (ι₂ → α) by recursive application of this instance.

This action propagates the axioms of the original action of M on α; we can show that if we
additionally have [module M α], then our action above satisfies module M (ι → α), and similarly
for all the other typeclasses in fig. 4.1a.

4.3.2. Sets, through their elements

On sets, mathlib defines a derived action via the action on the elements [mathlib#997], as

33
instance has_smul_set [has_smul α β] : has_smul α (set β) :=

{ smul := λ a s, (λ b, a • b) '' s }

which satisfies a • {x, y} = {a • x, a • y}. Once again, the axioms of the original action are
propagated; though to a much lesser extent, as 0 • s = 0 (where 0 on the RHS is the set {0})
does not hold if s is the empty set. An analogous construction exists for finsets [mathlib#12865].

For historical reasons, these instances are not globally available by default; they must be
requested locally using open_locale pointwise.

4.3.3. Morphisms of additive groups, through their codomain

For functions in section 4.3.1 and sets in section 4.3.1, the action we describe contains no proof
obligations—we did not need to know any properties of [has_smul M α] to define has_smul M (ι

→ α). This is not always the case; we cannot conclude has_smul R (M →+ N) from [has_smul R N]

as we don’t know enough about the action of R on N to know if additive maps remain additive.
Moving away from the root node in fig. 4.1a towards stronger typeclasses is usually enough
to resolve this—in this particular case, we can conclude distrib_mul_action R (M →+ N) from
[distrib_mul_action R N] [mathlib#6891].

4.3.4. Polynomials, through their coefficients

Another simple example of a derived action is that polynomials R[X] (polynomial R or R[X])
inherit an action by a type S when S acts upon their coefficients. This is a stronger statement
than has_smul R R[X] (that polynomials are acted upon by their coefficients), as it generalizes in
the same way as the instance we saw in section 4.3.1 to allow R to act on R[X][X] (a polynomial
in two variables). Until [mathlib#4784], only this weaker statement was available.

40

Chapter 4. Scalar actions

As with the action on additive morphisms in section 4.3.3, we cannot directly conclude has_

smul S R[X] from has_smul S R, this time because if we had our action on the coefficients satisfy
1 • (0 : R) = 1, then we would end up with 1 • (0 : R[X]) = 1 + X + X^2 + ⋯ which has
infinite support and thus is not a polynomial at all! Once again, we can instead start at a stronger
typeclass in fig. 4.1a and provide the typeclass instance showing that distrib_mul_action S R

implies distrib_mul_action S R[X] [mathlib#7664], as distrib_mul_action provides the crucial
proof that 1 • (0 : R) = 0 and ensures that the scaled polynomial is well formed. This instance
solves the has_smul R R[X][X] case by having us search for distrib_mul_action R R[X] and then
distrib_mul_action R R before finally finishing the search at the instance in section 4.2.1.

Polynomials in mathlib are at the end of a chain of simpler constructions; they are defined as the
special case of a “monoid algebra” whose generators are the natural numbers corresponding to the
powers of X. A monoid algebra is in turn defined as a “finitely supported function” representing
its coefficients; functions which are zero at all but finitely-many points. Before the upgraded
has_smul instance could be put on polynomials [mathlib#4784], the author had to first upgrade
a corresponding instance on monoid algebras [mathlib#4365], which in turn relied on an earlier
upgrade to the instance on finitely supported functions [mathlib#284]; a sequence spanning over
two years!

Multivariate polynomials are treated separately in mathlib, but the handling of scalar actions
largely mirrors the univariate case; this time, it was the author’s turn to perform the generalization
from has_smul R (mv_polynomial σ R) to has_smul S (mv_polynomial σ R), in [mathlib#6533].

4.3.5. Interactions with other actions

The strategy used for additive maps in section 4.3.3 of choosing stronger typeclasses from fig. 4.1a
can only take us so far. Once we start working with types that themselves ingrain a preferred
action, we need some additional tools. For instance, the closely-related types for R-linear maps
M →ₗ[R] N and R-submodules submodule R N ingrain a preferred R-action. For the first of these
cases, we can start by attempting to build a general action by an arbitrary type α. If we do this
we find ourselves left with two proof obligations, indicated by the show ..., from syntax.

33

instance {α R M N : Type*}

[semiring R] [add_comm_monoid M] [add_comm_monoid N] [has_smul α N] [module R M] [module R N] :

has_smul α (M →ₗ[R] N) :=

{ smul := λ a f, { to_fun := λ m, a • f m,

map_add' := λ m₁ m₂, (congr_arg _ $ f.map_add _ _).trans $

show a • (f m₁ + f m₂) = a • f m₁ + a • f m₂, from sorry,

map_smul' := λ r m, (congr_arg _ $ f.map_smul _ _).trans $

show a • r • f m = r • a • f m, from sorry } }

The goal in map_add' tells us we need to strengthen [has_smul α N] to [monoid α] [distrib_

mul_action α N], just as we already would have done when building the instance in section 4.3.3.
The goal in map_smul' is more troublesome. The easy way out is to replace α with a commutative

R so that our statement becomes

41

Chapter 4. Scalar actions

33

instance {α M N : Type*}

[comm_semiring R] [add_comm_monoid M] [add_comm_monoid N] [module R M] [module R N] :

has_smul R (M →ₗ[R] N) :=

and the sorry can be closed with a • r • f m = (a * r) • f m = (r * a) • f m = r • a • f m

which follows from the axioms of mul_action and commutativity of R. Another approach would be
to require R to be an α-algebra with [algebra α R], and that the α-action on R and N is compatible
with the R-action on N.

To best solve this problem, mathlib provides two additional typeclasses about scalar actions.
The first expresses the compatibility condition we would need to use [algebra α R] as mentioned
above, as

33
class is_scalar_tower (M N α : Type*) [has_smul M N] [has_smul N α] [has_smul M α] : Prop :=

(smul_assoc : ∀ (x : M) (y : N) (z : α), (x • y) • z = x • (y • z))

The name alludes to towers of algebras, which are described in more detail in [43, Section 4.2].
Our particular problem can be solved more directly with the second typeclass, [smul_comm_class
α R N], which expresses exactly the condition we require:

33
class smul_comm_class (M N α : Type*) [has_smul M α] [has_smul N α] : Prop :=

(smul_comm : ∀ (m : M) (n : N) (a : α), m • n • a = n • m • a)

After this typeclass was introduced in [mathlib#4770], the author contributed and drove the review
of a large number of instances of it [mathlib#6534; mathlib#6614; mathlib#8965; mathlib#15876;
mathlib#10262], most notably those for polynomials [mathlib#6542; mathlib#6592], product types
[mathlib#6139], and the repeated addition actions in section 4.2.2 [mathlib#5205; mathlib#5369;
mathlib#5509; mathlib#13174].

4.4. Algebras and not-quite algebras
The mathlib algebra R A describes an associative unital R-algebra over A given a comm_semiring R

and semiring A. The definition is roughly

33

class algebra (R A : Type*) [comm_semiring R] [semiring A] extends has_smul R A :=

(algebra_map : R →+* A)

(commutes : ∀ r x, algebra_map r * x = x * algebra_map r)

(smul_def : ∀ r x, r • x = algebra_map r * x)

which states that there is a canonical ring homomorphism from R to A which agrees with • and
sends R to the center of A. This parameterization of the axioms is difficult to generalize to A being
a non-unital and non-associative ring. However, mathlib also provides a definition to construct an
algebra from an alternate set of axioms:

33

def algebra.of_module (R A : Type*) [comm_semiring R] [semiring A] [module R A]

(h₁ : ∀ (r : R) (x y : A), (r • x) * y = r • (x * y))

(h₂ : ∀ (r : R) (x y : A), x * (r • y) = r • (x * y)) : algebra R A := sorry

If we look carefully, we note that h₁ and h₂ closely resemble smul_assoc and smul_comm from

42

Chapter 4. Scalar actions

section 4.3.5, but with some *s substituted for •s. But if we look back to section 4.2.1, we
remember that when x and y are the same type, x * y = x • y by definition! This means that h₁

and h₂ correspond directly with is_scalar_tower R A A and smul_comm_class R A A, respectively.
This is a valuable insight, because it allows us to use the follow sequences of typeclass arguments

interchangeably:
33variables [comm_semiring R] [semiring A] [algebra R A]

33variables [comm_semiring R] [semiring A] [module R A] [is_scalar_tower R A A] [smul_comm_class R A A]

Knowing this, it becomes immediately obvious how to generalize various statements to non-unital
algebras (which were needed in [mathlib#7932]); we switch from from the first form to the
second form, and then replace [semiring A] with [non_unital_semiring A], something which
was not permitted on the unexpanded version. Another generalization this permits is one that
allows putting “most of” an R'-algebra structure on A when R' is only a monoid, which comes
up for instance when R' := units R. In this case, we replace [comm_semiring R] [semiring A]

[module R A] with [monoid R] [semiring A] [distrib_mul_action R A]. This generalization was
used when proving intermediate results needed for Sylvester’s law of inertia [mathlib#7416].

4.5. Typeclass diamonds
Frequently, there are multiple ways for Lean to construct a typeclass. One example arises when
considering how the ring of module endomorphisms, M →ₗ[R] M with * as composition, acts on
itself; module (M →ₗ[R] M) (M →ₗ[R] M). There are two routes to find this instance, as shown
in fig. 4.3; we call this situation a “typeclass diamond”, in light of the shape of the figure5.
Once route is to use the action from section 4.2.1, where • is just defined as *; this gives an
action characterized by (f • g) x = (f * g) x = f (g x). The other route is to combine the
codomain-wise action from section 4.3 with the endomorphism action from section 4.2.3; this
gives an action characterized by (f • g) x = f • g x = f (g x). Depending on the order of the
search, Lean could take either of these two paths; though as the result is the same (the paths
“commute”), we do not care here.

4.5.1. Non-commuting diamonds

While Lean does not care about the existence of multiple paths and will happily just pick one, for
the typeclass to be useful it needs to be predictable to the user—all they see is a • in the goal
state. This means that whenever we have a diamond, we want all the paths to produce the same
• such that the actual path taken does not matter. In this section, we shall give an example of
an instance that violates this rule.

mathlib contains the following variant of the function.has_smul' that we saw earlier, which

5Although in fact not all such situations actually resemble diamonds!

43

Chapter 4. Scalar actions

(f • g) x

(f * g) xf • g x

f (g x)

semiring.to_module : module (M →ₗ[R] M) (M →ₗ[R] M)linear_map.module : module M (M →ₗ[R] M)

module.End.semiring : semiring (M →ₗ[R] M)module.End.apply_mul_action : module (M →ₗ[R] M) M

Figure 4.3.: A commuting diamond in typeclass search
Here the nodes show the expression, while the edges represent using a certain instance to
populate the • or *, and point towards the definition implied by that instance.

(f • g) i j

(f i • g i) j

f i • g i j

(f • g i) j

f j • g i j

.has_smul'' : has_smul (ι → M) (ι → ι → α).has_smul' : has_smul (ι → M) (ι → ι → α)

.has_smul' : has_smul M (ι → M)

.has_smul'' : has_smul (ι → M) (ι → α)

Figure 4.4.: A non-commuting diamond in typeclass search

applies scalar multiplication pointwise between two families (or vectors) of elements6.

33
instance function.has_smul'' (ι M α : Type*) [has_smul M α] : has_smul (ι → M) (ι → α) :=

{ smul := λ r v, (λ i, r i • v i) }

Mathematically this is a very reasonable operation, but in the context of typeclass diamonds we
shall see it is not. In particular, consider a typeclass search for has_smul (ι → M) (ι → ι → α) in
the presence of has_smul M α, as shown in fig. 4.4. Here, we find that one path gives (f • g) i

j = f i • g i j, while the other gives (f • g) i j = f j • g i j, where the argument to f is
different. We say these paths are not “propositionally equal” (as it can be proved in most cases7

that they do not agree), and call this instance diamond “non-commuting”.

4.5.2. Definitional equality

There is a reason that section 4.5.1 specifically refers to issues with propositional equality in
typeclass resolution; dependent type theory leaves us with another important kind of equality,
definitional equality, which holds only if things are true by construction.

The following example, which shows that a family of additive maps are a module under scaling
by natural numbers, is vulnerable to issues around definitional equality.

33example {ι A B} [add_comm_monoid A] [add_comm_monoid B] : module ℕ (ι → A →+ B) := by apply_instance

The possible typeclass-resolution paths available are shown in fig. 4.5.

6In some sense, providing a one-sided “broadcasting” multiplication like that found in [27]; though only for when
the right array has more dimensions than the left.

7The exception being when subsingleton ι (i.e. when there is only a single inhabitant of ι, and so i = j) or
similar!

44

Chapter 4. Scalar actions

add_comm_monoid Badd_comm_monoid (A →+ B)add_comm_monoid (ι → A →+ B)

module ℕ Bmodule ℕ (A →+ B)module ℕ (ι → A →+ B)

Figure 4.5.: Compounding diamonds in typeclass search
Three possible paths to resolve module ℕ (ι → A →+ B), with arrows showing implications.
Diamonds are created by the choice between inheriting a module structure (horizontal
edges), or deriving it from the additive structure (vertical edges).

From the viewpoint of propositional equality, we are safe from non-commuting paths; it can be
proven that ∀ (M : Type*) [add_comm_monoid M], subsingleton (module ℕ M) (that is that all
ℕ-module structures are equal), and thus we can conclude the paths must be equal from the type
of their endpoint alone. To a user of Lean, this means that they can be confident that the •

carries the right mathematical meaning.
When it comes to applying lemmas about •, it is not sufficient that • carry the right mathematical

meaning; the • in the lemma statement needs to unify with the • in the target. In practice, this
means that the instances found for each need to be definitionally equal, otherwise users are left
with baffling error messages about how n • x does not match n • x.

In older versions of mathlib, the paths taken around the diamonds in fig. 4.5 resulted in instances
that were propositionally equal, but not definitionally equal, as shown in fig. 4.6. The underlying
reason was that the recursor @nat.rec for natural numbers (which underpins the ^[n] notation in
fig. 4.6) does not commute definitionally with lambda introduction λ a,; that is, the following
example fails:

33

example {α β} (f₀ : α → β) (f : α → ℕ → β → β) (n : ℕ) :

@nat.rec (λ n, α → β) (λ a, f₀ a) (λ n ih a, f a n (ih a)) n =

λ a, @nat.rec (λ n, β) (f₀ a) (λ n ih, f a n ih) n :=

rfl

This meant that lemmas about the natural ℕ-action (blue path, fig. 4.5) such as ∑ x in s, c = s

.card • c would fail to match goals containing a derived ℕ-action (green and red paths, fig. 4.5).
This was fixed in [mathlib#7084] by requiring the definition of add_comm_monoid M to include an
implementation of the ℕ-module structure; namely, a new nsmul field, and a proof that it coincides
propositionally with the naïve recursive implementation.

While mathematically it is bizarre to say “a commutative additive monoid has a zero, addition,
and a scalar-multiplication by naturals, such that …”, in Lean this is crucial to allow manual control
of definitional equality such that the green and blue paths in fig. 4.5 can be made definitionally
equal to the red path. This is analogous to the situation described in [39, section 4.1] for topologies
associated with metric spaces, and follows the “forgetful inheritance” pattern described in [44].
Further discussion of this nsmul field can be found in [45, §7].

A similar place in which this comes up is when constructing algebra ℕ S, algebra ℤ R, and
algebra ℚ K instances for a semiring, ring, or characteristic-zero division ring, respectively.

45

Chapter 4. Scalar actions

n • f i a(n • f i) a(n • f) i a

(λ x, x + f i a)^[n] 0

(λ x, λ a, x a + f i a)^[n] 0 a

(λ x, λ i a, x i a + f i a)^[n] 0 i a

(λ x, x + f i)^[n] 0 a

(λ x, λ i, x i + f i)^[n] 0 i a(λ x, x + f)^[n] 0 i a

Figure 4.6.: Non-commuting diamonds in repeated addition actions
Prior to [mathlib#7084], the expressions shown here are the ones found through the paths
in fig. 4.5, where the g^[n] x operation is iterated function application, g^[2] x = g (g x).
The arrows mean “unfolds to” as they did in figs. 4.3 and 4.4.

In each case, the type of the instance is a subsingleton and so instance paths can be seen
trivially to commute propositionally. The danger arises when constructing the algebra_map

fields; the “obvious” way is to do so recursively, by recursing structurally on n : ℕ/z : ℤ/q : ℚ

and setting algebra_map _ _ (n + 1) = algebra_map _ _ n + 1, etc. This approach not only
fails on a very similar example to fig. 4.5, but also fails in the case when S = ℕ/R = ℤ/K = ℚ,
as the identity function is certainly not equal by definition to such a recursive scheme. The
solution in [mathlib#12182; mathlib#14894] was also similar; adding of_nat/of_int/of_rat field
to the semiring/ring/division_ring typeclasses8 and proof fields demonstrating that they are
well-behaved.

This is not the last time we shall have to concern ourselves with definitional equality; we shall
see the relevance of it again in sections 6.3.1 and 7.3.2.

4.6. Conjugation, via type synonyms
While section 4.5 gives some more involved examples of how derived actions can induce conflicting
definitions, we can obtain conflicting actions much more simply. Consider for instance the ways in
which a group can act on itself: both g · h = gh and g · h = ghg−1 are reasonable actions, but we
clearly can’t use the same notation for both without causing confusion9, and so only the former
(section 4.2.1) gets the privilege of the has_smul G G typeclass.

This is of no help to us if we really want to work with the latter conjugation action10. In some
cases we can avoid this by working with mul_distrib_mul_action G H for arbitrary groups G and H

instead, which is a more abstract representation of actions (like conjugation) which distribute over
multiplication. Even then, this abstraction only postpones the inevitable; it cannot be specialized
to the concrete case of g · h = ghg−1 until we solve the original issue.

8Or rather, suitable ancestors of these classes, for reasons related to non-associative algebras.
9Lean may be happy for us to overload the notation in this way, but the humans writing proofs who see this

notation in their goal are unlikely to be!
10Which for instance we may want to do when formalizing the transformation by rotors in section 2.1.3.

46

Chapter 4. Scalar actions

The solution used by mathlib is that of “type synonyms”, which can be written as either of the
following forms

33

-- nominal types

@[deriving group]

def conj_act (G : Type*) : Type* :=

G

def of_conj_act : conj_act G ≃* G :=

mul_equiv.refl _

def to_conj_act : G ≃* conj_act G :=

of_conj_act.symm

33

-- one-field structures

structure conj_act (G : Type*) : Type* :=

to_conj_act :: (of_conj_act : G)

instance [has_mul G] : has_mul (conj_act G) :=

{ mul := λ g h, to_conj_act (g.of_conj_act * h.of_conj_act) }

instance [Group G] : group (conj_act G) :=

function.injective.group to_conj_act

sorry sorry sorry sorry sorry sorry sorry

where in both cases, we define a new type conj_act G which is a copy of G with the same group
structure, and a pair of functions to_conj_act and of_conj_act to translate from G to conj_act

G and back. The trade-offs between the two approaches are not particularly relevant to this
chapter11, and in this particular case mathlib opts for the left approach.

So far, the type synonym has achieved nothing; it behaves in exactly the same way as G! To
give it purpose, we give it a special action on G that is the conjugation action

33
instance : has_smul (conj_act G) G :=

{ smul := λ cg h, of_conj_act cg * h * (of_conj_act cg)⁻¹ }

where we convert from conj_act G back to G before implementing the expected expression. This
allows us to write the conjugation of g on h as to_conj_act g • h, and prove the various axioms
of the stronger typeclasses in fig. 4.1a. The synonym is placed on the type doing the acting
(has_smul (conj_act G) G) rather than the type being acted upon (has_smul G (conj_act G))
as this permits us to use both the multiplication and conjugation action simultaneously12 (via
different spellings).

The verbosity of this spelling might make it seem unappealing; if a spelling this long is
acceptable, it would be tempting to conclude we could have just used the spelling conj g h where
conj : G →* monoid.End G is the appropriate morphism taken from the right column of table 4.2.
The reason we avoid making this choice is that it would exclude the conjugation action from
incorporation into the derived instances in section 4.3. One action in particular is of interest
here; the pointwise action [mathlib#8945] (matching section 4.3.2) induced by elements g : G on
a subgroup S : subgroup H when mul_distrib_mul_action G H. Combined with the conjugation
action we just saw, this gives us the usual conjugation action of an element on a subgroup! The
type synonym in this section was added in [mathlib#8627] by Chris Hughes, in response to the
author’s review of Chris’ previous approach in an early version of [mathlib#8592], which aimed
to define only the conjugation action.
11They come down to the left version being easier to misuse (since Lean is willing to confuse the types G and

conj_act G in some situations), and the right version being much more work to set up (since Lean is not ever
willing to confuse the types and we must therefore rebuild the group structure from scratch, hence all the
sorrys). If used correctly, the two approaches are in practice equivalent to the end user.

12Though in fact there is a third option, explored in section 4.9.

47

Chapter 4. Scalar actions

4.7. Right actions
The scalar action typeclass has_smul in mathlib is intended for left actions (those where a(bX) =

(ab)X), which is apparent both in the definition of the mul_smul axiom of mul_action, and in the
order in which the arguments appear in the notation. However, this does not mean that right
actions (those where (Xb)a = X(ba)) are impossible.

The trick is to use another type synonym (section 4.6) from mathlib, mul_opposite α, which is
built similarly to the pedagogical example in section 3.4.3 and which reverses the multiplication
order. With this in mind, we can require a right action by writing [mul_action (mul_opposite

M) α], which permits us to write op a • X as a messy spelling for a right action on X by a.
The author introduced mathlib’s first right action in [mathlib#7630], via the instance

33

instance monoid.to_opposite_mul_action [monoid α] : mul_action (mul_opposite α) α :=

{ smul := λ c x, x * c.unop,

one_smul := mul_one,

mul_smul := λ x y r, (mul_assoc _ _ _).symm }

lemma op_smul_eq_mul [monoid α] {a b : α} : op a • b = b * a := rfl

which mirrors the left-multiplication action in section 4.2.1. Similar instances were introduced for
the other stronger typeclasses in fig. 4.1a.

One big advantage of this design over introducing a new right_mul_action type is that the vast
majority of the derived actions from section 4.3 come for free: as an example, mul_action (mul_

opposite α) (ι → α) is found automatically and corresponds to the action (op a • f) i = op

a • f i = f i * a. This is precisely the action we want, if for example we want to multiply a
family of quaternions (or indeed, any object with non-commutative multiplication) by a constant
on the right.

4.7.1. Bimodules

Often, we wish to consider simultaneous right and left actions, such as an R-S-bimodule M,
where R acts on the left of M, and S on the right. Crucially, these actions must be compatible;
(rm)s = r(ms). Mathematically, this looks like associativity, and so we might hope to capture
it using the smul_assoc from is_scalar_tower. In actuality, to Lean the statement is r • op

s • m = op s • r • m, and so this is commutativity! We can thus capture the structure of the
bimodule M as follows:

33variables [module R M] [module (mul_opposite S) M] [smul_comm_class R (mul_opposite S) M]

When R is commutative, we typically don’t bother with talking about left and right actions, as
they are usually equivalent13. However, it would be a bad idea to make module R M imply module

(mul_opposite R) M, as even though the commutativity of R means we need not worry about

13and if they weren’t, mathlib would typically force the use of a type synonym (section 4.6) to declare the
less-canonical action.

48

Chapter 4. Scalar actions

propositionally equal typeclass diamonds arising, we are almost guaranteed to run into definitional
ones. The solution was to introduce an is_central_scalar R m typeclass [mathlib#10543], which
instead of producing a new instance and risking diamond issues, simply asserts that two existing
instances interact in the desired way; namely that op_smul_eq_smul : op r • m = r • m.

Adding this typeclass is just the tip of the iceberg; the real work is to saturate mathlib with
instances of this typeclass. [mathlib#10543] claimed the low-hanging fruit, providing instances
for commutative monoids, product types (M × N, Π i, M i), finitely supported functions (ι →₀

M, Π₀ i : ι, M i), ULift M, polynomials and their generalizations (monoid_algebra R M, add_

monoid_algebra R M, R[X], mv_polynomial σ R), matrix m n M, morphisms (M →+ N, M →ₗ[R] N),
complex numbers, and pointwise instances14 (set M, submonoid M, add_submonoid M, subgroup M,
add_subgroup M, subsemiring M, subring M, submodule M). Further contributions [mathlib#10720;
mathlib#11291; mathlib#11297 ; mathlib#12248; mathlib#12272; mathlib#12434; mathlib#13710;
mathlib#15359; mathlib#18682] brought the total up to more than 60 is_central_scalar in-
stances across mathlib.

4.7.2. Interaction with algebra

The addition of all these is_central_scalar instances was not simply motivated by completeness:
it was a prerequisite for solving a larger issue, the fact that we want every algebra R A to
automatically be a left- and right- R-module. Without this inference happening automatically, we
find that the act of “generalizing” results in mathlib to bimodules (an example of which we will
see much later in section 10.1.5) results in them no longer applying to algebras!

We already saw in section 4.4 that mathlib knows that an algebra R A implies a left module

R A structure, and forces it to agree with left-multiplication. To make it also imply a right-
module (module (mul_opposite R) A) structure, we need it to carry an additional to_has_op_
smul : has_smul (mul_opposite R) A field (the right action), and a proof that it coincides with
right-multiplication, op_smul_def' x r : op r • x = x * to_fun r. Such a refactor is a rather
herculean task; there are at least 130 instances of algebra in mathlib15, and adding fields to
algebra requires every instance to provide values for these fields. To make matters worse, mathlib
is a moving (and growing) target, and once you think you’re almost done, you merge in the latest
changes from other contributors and have even more algebra instances to fix!

The exercise of adding a large number of is_central_scalar instances was a means to slowly
close the gap; the act of adding these results often involved adding associated has_smul (mul_

opposite R) A instances, getting half the work out of the way. Additionally, the op_smul_eq_smul

lemma provided by these instances paves a quick path to proving op_smul_def'. Getting these
intermediate results merged into mathlib before the full project was a way of offloading the
work of keeping up: while results are only in your local modifications, it falls primarily on
you to deal with conflicts and proof breakages arising from others’ changes; once results are in

14elementwise actions on the elements of a set or sub-object.
15According to the generated documentation.

49

Chapter 4. Scalar actions

mathlib, the responsibility transfers to the community at large. As it turned out, this approach of
contributing early and often had further benefits; the author’s prototype of a complete refactor
in [mathlib#10716] was “caught in the porting tide”, which is to say that the translation (“port”)
from Lean 3 to Lean 4 (which starting from the simplest files and rose up through the import
hierarchy) caught up with the files it modified, forcing it to be abandoned. The same fate did not
befall the is_central_scalar instances, as these were already merged before the port began.

As discussed by the author in [mathlib#7152], this refactor introduces further complications
almost exactly analogous to the ones we saw in fig. 4.5. If every algebra implies a right action,
then we need N-algebras to imply right-N-actions. We saw in section 4.5.2 that to make this
work without definitional typeclass diamonds for left-actions, we needed to add an nsmul field
to additive monoids (and zsmul to additive groups); for right-actions, we need to do the same
for op_nsmul and op_zsmul, making the mathlib add_comm_group even further from the expected
mathematical definition!

4.7.3. Other compatibility concerns

In section 4.3.5, we saw how when working even just with left-actions, needs arise for compatibility
typeclasses like is_scalar_tower and smul_comm_class. In section 4.7.1, we saw that the latter
can be repurposed to provide a compatibility between left and right actions. However, there
are other common interactions of left and right actions for which mathlib has no compatibility
typeclass.

Introducing briefly for clarity the notation16 a •> b for a • b and b <• a for op a • b, there is
no typeclass in mathlib capable of expressing (a <• b) •> c = a •> (b •> c). Some examples of
when this situation arises are [monoid M] (a b c : M) (all three variables belong to the same non-
commutative monoid), [monoid M] (a c : M) (S : submonoid M) (b : S) (the second belongs
to a submonoid of the monoid containing the other two), and [monoid M] (a b : M) (c : ι → M)

(the third variable is a coordinate vector).

4.7.4. On functions, through their domains

In section 4.6, we remarked that sometime the left action we want is not the one by left-
multiplication, and that to resolve this we must introduce a type synonym. The same issue arises
for right actions. A particularly typical example is the right action on function types (or in
general, morphisms) that acts through their domain; the action where for f : G→ G, g, h : G, we
define the right action fg such that (fg)(h) = f(gh). This is problematic, because the derived
action in section 4.3.1 gives us the action where (fg)(h) = f(h)g, which when combined with the
instance we wanted produces a non-commuting instance diamond.

Type synonyms again provide a solution here; in [mathlib4#5368], after some discussion with
the author, Yury Kudryashov introduces a DomMulAct M type synonym which induces precisely

16Which is proposed for inclusion in mathlib in [mathlib4#8909].

50

Chapter 4. Scalar actions

(mk g • f) a b

(mk g • f a) b

f a (g • b)

f (g • a) b

Pi.instSMul : SMul (DomMulAct G) (H → H → H)

DomMulAct.instSMul : SMul (DomMulAct G) (H → H)

DomMulAct.instSMul : SMul (DomMulAct G) (H → H → H)

Figure 4.7.: A non-commuting diamond caused by DomMulAct

Here we have an action SMul G H, variables g : G, a b : H and f : H → H → H. The ambiguity
arises through choosing which argument of f to act upon.

this (fg)(h) = f(gh) action, which Lean characterizes as:
44example [SMul M α] (c : M) (f : α → β) (a : α) : (mk c • f) a = f (c • a) := rfl

which for our example specializes to
44example [Group G] (g : G) (f : H → H) (h : H) : (mk g • f) a = f (g * h) := rfl

With this synonym, Lean cannot take a wrong turn towards using the instance in section 4.3.1
with (fg)(h) = f(h)g, as there is no action of SMul (DomMulAct G) G available.

Unfortunately, this solution only postpones the diamonds to one step further down the road.
When faced with an action on a function taking two arguments, Lean now faces an ambiguity
about which of the two domains the action should act upon (thanks to the action in section 4.3.1),
as shown in fig. 4.7. This isn’t quite as bad as the diamond in fig. 4.4, as it only impacts users of
DomMulAct; but it is indicative that type synonyms are not a silver bullet.

We could resolve this by removing the Pi.instSMul instance in section 4.3.1 that formed
one of the offending edges, but this would prevent writing r • ![x, y, z] to scale a vector of
coefficients. A compromise is available through the use of even more type synonyms; we could
demote the instance for actions through the codomain to a CodMulAct synonym, and then the two
actions in fig. 4.7 would be spelled as (DomMulAct.mk g • f) a b = f (g * a) b and (CodMulAct

.mk (DomMulAct.mk g) • f) a b = f a (g * b), and r • ![x, y, z] would need to be written
as CodMulAct.mk r • ![x, y, z]. The verbosity could be somewhat reduced by introducing
some shorthand notation, which for these three examples could resemble g •D f, g •CD f, and
r •C ![x, y, z].

Such a compromise would involve a substantial refactor to mathlib, and for now the costs of
the instance diamond in fig. 4.7 do not in the author’s opinion outweigh the effort involved in
performing the refactor, let alone the negative impact of the increased verbosity.

4.8. Lean 4’s new HMul typeclass
Lean 4 generalizes the meaning of the * syntax, allowing it to be used to multiply elements of
different types. This is done by means of a new HMul α β γ typeclass that provides the operator

51

Chapter 4. Scalar actions

(f * g) i j

(f * g i) j

f i * g j

(f i * g) j

f j * g i

hmulRight : HMul (ι → ℕ) (ι → ℕ) (ι → ι → ℕ)hmulLeft : HMul (ι → ℕ) (ι → ℕ) (ι → ι → ℕ)

hmulLeft : HMul (ι → ℕ) ℕ (ι → ι → ℕ)

hmulRight : HMul ℕ (ι → ℕ) (ι → ι → ℕ)

Figure 4.8.: A non-commuting diamond caused by HMul for f g : ι → ℕ

* through the function HMul.hMul : α → β → γ, where the H stands for “heterogeneous”. This
generalization is very useful for multiplication of matrices (which mathlib switched to using in
[mathlib4#6487]), as here multiplication is naturally heterogeneous in the dimensions of the
matrices; we have HMul.hMul : Matrix l m R → Matrix m n R → Matrix l n R.

At first sight, the introduction of HMul would appear to make has_scalar.smul : α → β → β

redundant, as it falls out as a special case. Similarly, we could even see HMul as the answer to
the right actions in section 4.7, since we can also recover β → α → β as a special case. Even
smul_comm_class and is_scalar_tower could likely be subsumed by a typeclass for generalized
heterogeneous commutativity or associativity, respectively.

Unfortunately, for our use-case the flexibility of HMul is also its downfall; attempting to build
basic left- and right- actions for “vectors” (as in section 4.3) using it almost immediately leads to
instance diamonds in the style of section 4.5.1. The two basic instances in question are:

44

-- HMul generalizes to families on the right

instance hmulRight [inst : HMul α β γ] : HMul α (ι → β) (ι → γ) where

hMul a b := fun i => a * b i

-- HMul generalizes to families on the left

instance hmulLeft [inst : HMul α β γ] : HMul (ι → α) β (ι → γ) where

hMul a b := fun i => a i * b

and the diamond is formed when querying for HMul (ι → ℕ) (ι → ℕ) (ι → ι → ℕ), as shown in
fig. 4.8. The following code can be used to verify the diagram is correct.

44

variable (ι)

abbrev blue : HMul (ι → ℕ) (ι → ℕ) (ι → ι → ℕ) := hmulLeft (inst := hmulRight)

abbrev red : HMul (ι → ℕ) (ι → ℕ) (ι → ι → ℕ) := hmulRight (inst := hmulLeft)

-- the two paths give conflicting results, swapping the placements of `i` and `j`

example (f g : ι → ℕ) (i j : ι) : letI := blue ι; (f * g) i j = f i * g j := rfl

example (f g : ι → ℕ) (i j : ι) : letI := red ι; (f * g) i j = f j * g i := rfl

Strictly speaking, our problem is not that HMul is too general, but that hmulLeft and hmulRight

are. We can resolve this by eliminating γ, and using repeated type variables to distinguish right
and left actions:

52

Chapter 4. Scalar actions

44

-- right-HMul generalizes to families on the right

instance hmulRight [inst : HMul α β β] : HMul α (ι → β) (ι → β) where

hMul a b := fun i => a * b i

-- left-HMul generalizes to families on the left

instance hmulLeft [inst : HMul α β α] : HMul (ι → α) β (ι → α) where

hMul a b := fun i => a i * b

At this point though, we may as well have defined LeftSMul α β := HMul α β β and RightSMul

α β := HMul α β α, an approach which is not all that different from the current mathlib approach
which is effectively using LeftSMul α β := SMul α β and RightSMul α β := SMul (MulOpposite

α) β. The only real difference is the choice of symbol, * vs •.

4.9. Alternatives to type synonyms
In sections 4.6 and 4.7.4 we explored how mathlib uses DomMulAct and ConjAct synonyms that
wraps the type doing the acting, in order to distinguish these action from other “more canonical”
actions. However, this comes at the cost of introducing some annoying boilerplate in the form of
DomMulAct.mk and ConjAct.toConjAct, which we use to juggle between DomMulAct G, ConjAct G,
and G. While section 4.7.4 suggests that the pain of this boilerplate can be reduced with clever
notation, it still ends up being something that has to be manipulated within proofs. This section
briefly outlines an alternative design that has no prior use in mathlib.

A possible redesign of the SMul typeclass could be

44

def SMul.Discr := Type

class SMul (M : Type*) (α : Type*) (discr : SMul.Discr) where

smul : M → α → α

notation3:72 a:72 " •[" discr "] " b:72 => @SMul.smul _ _ discr _ a b

where the discr parameter acts as a discriminator to implement “tag dispatching” (to borrow the
term from C++) and contains information relevant only at typeclass-search-time about which
action to use; information that was previously tracked by attaching it to type synonyms wrapping
M and α. The discr parameter would be copied to all the other typeclasses in fig. 4.1a.

The actions in sections 4.2.1, 4.3.1 and 4.7.4 can then respectively be written

53

Chapter 4. Scalar actions

44

inductive SMul.Discr.leftMul : SMul.Discr

instance (M : Type*) [Mul M] : SMul M M .leftMul where

smul m n := m * n

inductive SMul.Discr.domAct (_ : SMul.Discr) : SMul.Discr

instance (ι α M : Type*) (discr) [SMul α ι discr] : SMul α (ι → M) discr.domAct where

smul a f := fun i => f (a •[discr] i)

inductive SMul.Discr.codAct (_ : SMul.Discr) : SMul.Discr

instance (ι α M : Type*) (discr) [SMul α M discr] : SMul α (ι → M) discr.codAct where

smul a f := fun i => a •[discr] (f i)

where the domAct and codAct discriminators are parameterized to record the discriminator they
inherit from.

With this infrastructure in place, the diamonds in fig. 4.7 are avoided by forcing the user to
spell which action they want:

44

variable {G H} (discr) [SMul G H discr] (g : G) (f : H → H → H) (a b : H)

example : (g •[discr.domAct] f) a b = f (g •[discr] a) b := rfl

example : (g •[discr.domAct.codAct] f) a b = f a (g •[discr] b) := rfl

This strategy is not without its downsides. It makes cases where the typeclass diamonds do
commute (such as fig. 4.3) more awkward to work with, requiring an additional compatibility
typeclass that states that two discriminators describe the same action; Additionally, bundled
linear maps would now need to take two extra arguments to specify the discriminator for their
source and domain. Determining whether these trade-offs are acceptable would require an attempt
at refactoring large pieces of mathlib, which the author will leave to a particularly interested
reader.

4.10. Summary
This chapter described in great detail the design of the • (“smul”) operator in mathlib, and the
typeclass infrastructure around it; which the author was heavily involved in the design of. Of
particular interest is the discussion on right actions (section 4.7), which are relatively new to
mathlib.

Many of the results in later chapters will require this infrastructure to even state their formaliza-
tions: especially section 10.1.5, where right actions turn out to be instrumental for working with
the dual quaternions, and section 10.2, where a tangled web of algebraic towers (section 4.3.5)
must be traversed.

The author is fortunate that for their use-cases, almost all actions are “canonical”. As a
result, the concerns of diamonds in typeclass search will not be of much interest in part III,
though we shall still find we have to think about them occasionally. This sadly is not a universal
experience for mathlib users, and further exploration of the ideas in section 4.9 may alleviate
these diamond-based difficulties.

54

5
Extensionality

One of the endearing things about mathematicians is
the extent to which they will go to avoid doing any real
work.

(Matthew Pordage)

This chapter was, after writing this thesis, adapted into [12].

A vital tactic to many of the formalizations in this thesis is the ext tactic [mathlib#104]. In
its most basic form, it reduces equalities of functions (f = g) into equality at every evaluation
(∀ x, f x = g x), and equalities of sets (s = t) into equivalence of membership in each set
(∀ x, x ∈ s ↔ x ∈ t). The tactic is extensible; new scenarios can be enabled by adding an @[ext]

attribute to a theorem, for instance to add support for finite sets analogous to the support for
sets:

33
@[ext] theorem finset.ext {α} {s t : finset α} (h : ∀ x, x ∈ s ↔ x ∈ t) : s = t :=

sorry

We will call such theorems “extensionality lemmas”. Configuration for morphisms (such as linear
maps) and sub-objects (such as subspaces) can be added in a similar way without much difficulty,
such as:
Theorem 5.1. For a commutative ring R and a pair of R-modules M , N , to show two R-linear
maps f, g : M →R N are equal, it suffices to show that they agree everywhere; ∀m, f(m) = g(m).

In some cases, we can write a more specialized extensionality lemma. One particularly useful
example is
Theorem 5.2. For a commutative ring R and an R-module M , to show two R-linear maps
f, g : R→R M are equal, it suffices to show that they agree on 1; f(1) = g(1).

For a more interesting example, let us consider linear maps from the tensor product of two
modules, for which the natural statement of extensionality is

55

Chapter 5. Extensionality

33
variables {R M N : Type*}

variables [comm_semiring R] [add_comm_monoid M] [add_comm_monoid N] [module R M] [module R N]

33

theorem tensor_product.comm_symm :

(tensor_product.comm R M N).symm

= tensor_product.comm R N M :=

begin

ext mn,

show (comm R M N).symm nm = comm R N M nm,

induction nm using tensor_product.induction_on

with n m x y hx hy,

{ -- the case with `nm = 0`

simp only [map_zero] },

{ refl }, -- the case with `nm = n ⊗ₜ m`

{ -- the case when `nm = x + y` and we have

-- `hx : (comm R M N).symm x = comm R N M x`

-- `hy : (comm R M N).symm y = comm R N M y`

simp only [hx, hy, map_add] }

end

(a) Using only linear_map.ext, theorem 5.1

33

theorem tensor_product.comm_symm :

(tensor_product.comm R M N).symm

= tensor_product.comm R N M :=

begin

ext n m,

show

(comm R M N).symm (n ⊗ₜ m) = comm R N M (n ⊗ₜ m),

refl -- true by definition!

end

(b) Using tensor_product.ext, theorem 5.3

Listing 5.1.: Two proofs showing that the natural braiding of the tensor product is symmetric
Using theorem 5.3 in (b) results in a much simpler argument than (a).

Theorem 5.3. For a commutative ring R and a trio of R-modules M , N , P , to show two
R-linear maps f, g : (M ⊗R N)→R P are equal, it suffices to show that they agree on the pure
tensors; ∀m,∀n, f(m⊗ n) = g(m⊗ n).

Due to its weaker assumption, this is a stronger statement than the extensionality lemma for
linear maps in theorem 5.1. We can write theorem 5.3 in Lean as follows:

33

theorem tensor_product.ext {R M N P : Type*}

[comm_semiring R] [add_comm_monoid M] [add_comm_monoid N] [add_comm_monoid P]

[module R M] [module R N] [module R P]

{f g : (M ⊗[R] N) →ₗ[R] P}

(H : ∀ (m : M) (n : N), f (m ⊗ₜ n) = g (m ⊗ₜ n)) : f = g :=

sorry

This a much more useful lemma than the one that requires H : ∀ (mn : M ⊗[R] N), f mn = g mn,
as it saves us from having to split mn into pure tensors ourselves. To see this benefit, we can work
through a proof that (tensor_product.comm R M N).symm = tensor_product.comm R N M; that is,
the natural braiding of the tensor product that on the pure tensors sends m ⊗ n 7→ n ⊗m is
symmetric. Listing 5.1 compares the formalization of such a proof with and without theorem 5.3.
Without the assistance of theorem 5.3, we are forced to induct on the structure of the tensor
product, and end up with two additional subgoals that we’d prefer not to think about.

56

Chapter 5. Extensionality

5.1. Chaining extensionality lemmas
However, even theorem 5.3 still only scratches the surface of the power behind the ext tactic.
Where it really excels is in its ability to chain extensionality lemmas. A simple example of
this is reducing equalities of two-argument functions into showing they agree when fully-applied
(∀ x y, f x y = g x y), but there are far more interesting cases. In particular, we shall explore
how the ext tactic can be chained on equalities of morphisms, specifically linear maps and algebra
morphisms. The key insight that massively boosts the power of ext is the fact that turning an
equality of morphisms into an equality of its evaluations should be a last resort! This may seem
surprising, since in the simple examples it seemed like the raison d’être of ext was to introduce
these ∀ x quantifiers; but there are frequently far better approaches.

To better understand this insight, we start with a warning of what happens if we overlook it,
by examining the following extension of theorem 5.3:

Theorem 5.4. For a commutative ring R and a quadruplet of R-modules M , N , P , Q, to
show two R-linear maps f3, g3 : ((M ⊗R N)⊗R P)→R Q are equal, it suffices to show that they
agree on the pure tensors; ∀m,∀n, ∀p, f((m⊗ n)⊗ p) = g((m⊗ n)⊗ p).

The statement of this extensionality lemma raises an immediate red flag; it suggests that
we are doomed to state a new theorem for every possible arity and associativity of tensor
products1 (and of course to prove each of them!). We can try to lessen this blow by proving
theorem 5.4 in terms of theorem 5.3, but it only gets us halfway; we are left to prove that
∀xmn : M ⊗N, ∀p, f(xmn ⊗ p) = g(xmn ⊗ p), where we have successfully taken apart only one of
the two tensor products, and are once again forced to induct upon the structure of xmn.

Our trouble here is that theorem 5.3 is too weak; it cannot be chained with itself, because it
consumes an equality of elements not an equality of morphisms. To correct this, we state it as in
theorem 5.5:
Theorem 5.5. For a commutative ring R and a trio of R-modules (M , N , P), to show two
R-linear maps f, g : (M ⊗R N) →R P are equal, it suffices to show that they agree when
composed with the canonical bilinear map (⊗) : M →R N →R (M ⊗R N); f ◦2 (⊗) = g ◦2 (⊗).
This equality is an equality of bilinear maps (linear maps with a codomain that is itself a linear
map) of type M →R N →R P .

The proof of theorem 5.5 follows immediately from that of theorem 5.3; indeed, applying ext

turns the former into the latter! In Lean, this condition is written (tensor_product.mk R M N)

.compr₂ f = (tensor_product.mk R M N).compr₂ g, where b.compr₂ f (or f ◦2 b) is the bilinear
map such that b.compr₂ f m n = f (b m n).

We now arrive at our key conclusion; theorem 5.4 can be proven using iterated applications of
theorem 5.5. The approach is shown in fig. 5.2, where T is theorem 5.5 and L is theorem 5.1. It
is here where our earlier remark that “turning an equality of morphisms into an equality of its

1Indeed, proving that vector spaces form a monoidal category requires two different associativities of the 4-ary
version.

57

Chapter 5. Extensionality

f3, g3 : ((M ⊗R N)⊗R P)→R Q
` f3 = g3

xmnp : (M ⊗R N)⊗R P
` f(xmnp) = g(xmnp)

f3 ◦2 (⊗) = g3 ◦2 (⊗)

xmn : M ⊗R N
` f3 ◦ (xmn ⊗ ·) = g3 ◦ (xmn ⊗ ·)

xmn : M ⊗R N, p : P
` f3(xmn ⊗ p) = g(xmn ⊗ p)

f3 ◦2 (⊗) ◦2 (⊗) = g3 ◦2 (⊗) ◦2 (⊗)

m : M
` f3 ◦2 (⊗) ◦ (m⊗ ·) = g3 ◦2 (⊗) ◦ (m⊗ ·)

m : M,n : N
` f3 ◦ ((m⊗ n)⊗ ·) = g3 ◦ ((m⊗ n)⊗ ·)

m : M,n : N, p : P
` f3((m⊗ n)⊗ p) = g3((m⊗ n)⊗ p)

L T

L

L

T

L

L

L

Theorem 5.3

Theorem 5.4

Figure 5.2.: A factorization of theorems 5.3 and 5.4 into theorem 5.5 (T) and theorem 5.1 (L)
Arrows show implications. Branching indicates that either child is sufficient, not that both
are necessary. Indeed, extensionality between tensor products of any arity of associativity
factors through T and L.

evaluations should be a last resort” comes into play; the most structured (and thus easiest to
prove) statement is reached by preferring T edges over L edges, as taking an L edge prematurely
leads to a dead end. The ext tactic can handle this graph traversal automatically; by setting the
T edges to have higher priority, they will be attempted first. It can be seen that in fact, variants
of theorem 5.4 for any arity of associativity of linear maps from tensor products can be tackled in
the same way; T edges will always split the left-most tensor product, and L edges will consume
non-tensor products from the left.

5.2. Wider applications
The benefits of this strategy (which we call “partially-applied ext lemmas”) extends far beyond
tensor products; there are numerous other situations where we can apply them:

• To show two linear maps (M ⊕ N) →R P from binary direct sums of modules agree, it
suffices to show that they agree when composed with inl : M →R M ⊕N := m 7→ (m, 0)

and inr : N →R M ⊕N := n 7→ (0, n); f ◦ inl = g ◦ inl and f ◦ inr = g ◦ inr.

• To show two linear maps f, g : (
⊕

i Mi)→R N from n-ary direct sums of modules agree, it
suffices to show that they agree when composed with every canonical injection into the ith
component ιi : Mi →

⊕
i Mi; ∀i, f ◦ ιi = g ◦ ιi.

58

Chapter 5. Extensionality

f, g : ((R[X]⊗M)⊕ (
⊕

i Mi))→R P
` f = g

f ◦ inl = g ◦ inl

f ◦ inl ◦2 (⊗) = g ◦ inl ◦2 (⊗)

k : N
` f ◦ inl ◦2 (⊗) ◦ (r 7→ rXk) = g ◦ inl ◦2 (⊗) ◦ (r 7→ rXk)

k : N
` f ◦ inl ◦ (Xk ⊗ ·) = g ◦ inl ◦ (Xk ⊗ ·)

k : N
` f((Xk ⊗m, 0)) = g((Xk ⊗m, 0))

f ◦ inr = g ◦ inr

i : I
` f ◦ inr ◦ ιi = g ◦ inr ◦ ιi

i : I, n : Ni

` f((0, ιi(n)) = g((0, ιi(n))

⊕

T

R[X]

L′

L

⊕
i

L

Figure 5.3.: Extensionality for a linear map from an arbitrarily-chosen compound type.
Here, the edges labelled R[X], ⊕, and

⊕
i are the extensionality lemmas listed in section 5.2,

L′ is theorem 5.2, and L and T are the same as in fig. 5.2.

• To show two linear maps from polynomials f, g : R[X] →R M agree, it suffices to show
they agree when composed with each of the maps that scale the kth power of X; ∀n, f ◦
(r 7→ rXk) = g ◦ (r 7→ rXk).

Arguably the cases that these examples apply to are all just different special cases of free modules,
but to mathlib they are genuinely different objects, and so we must teach ext about each of them
separately. Similar families of extensionality lemmas exist for special cases (or quotients) of free
monoids (and monoid morphisms), free rings (and ring morphisms), and notably free algebras
(and algebra morphisms). We shall see many examples of the algebra case throughout this thesis.
Crucially, within these families, the “partially-applied” lemmas are mutually compatible; as each
makes the minimal amount of progress and avoids applying L (theorem 5.1). For instance, if
faced with a pair of maps f, g : ((R[X]⊗M)⊕ (

⊕
i Ni))→R P , then ext will leave us to prove

∀k, ∀m, f((Xk ⊗ m, 0)) = g((Xk ⊗ m, 0)) and ∀i,∀n, f((0, ιi(n))) = g((0, ιi(n))), as shown in
fig. 5.3.

We will find this compatibility across types to be very useful in chapter 10, for which a
particularly compelling example is shown in fig. 10.2.

59

Chapter 5. Extensionality

5.3. As a motivation for point-free statements
So far, we have seen how extensionality lemmas can be designed to greatly aid the task of proving
equalities between morphisms from complex types. Unfortunately, most equalities we face are
between the objects, and we rarely face these equalities of morphisms unless we deliberately frame
our problems in a certain way.

A simple example of adjusting our statements to make such an equality appear arises when
building an isomorphism of modules M ∼=R N from the forward and inverse maps f : M →R N

and f−1 : N →R M . The conventional way to construct the isomorphism would be to show that
these morphisms are left and right inverses through ∀m, g(f(m)) = m and ∀n, f(g(n)) = n; which
are equalities of objects, not morphisms. If we instead re-frame our statements to g ◦ f = id and
f ◦ g = id, we are faced with equalities of morphisms that we can apply ext to. mathlib already
contains many definitions that assemble isomorphisms in this way. Once again turning to tensor
products as an illustrative example, if we have M := M1 ⊗R M2 and N := N1 ⊗R N2, then this
approach of showing that the composition is the identity, combined with the ext tactic, allows
us to prove f and g are inverses by considering only ∀m1,∀m2, g(f(m1 ⊗m2)) = m1 ⊗m2 and
∀n1,∀n2, f(g(n1 ⊗ n2)) = n1 ⊗ n2.

More generally, when faced with an equality of objects in terms of two functions of a free
variable, we can reduce our problem to an equality of morphisms by pushing that variable all
the way to an application on the right. For instance, if we want to show that ∀x, x× y = y × x

(where × is an arbitrary bilinear operation), we can:

• rewrite as ∀x, (· × y)(x) = (y × ·)(x), where the free variable x is now on the right on both
sides;

• note that (· × y) and (y × ·) describe linear maps

• conclude that it would be sufficient to prove (· × y) = (y × ·), which is an equality of
morphisms

This allows us to apply any extensionality lemmas that replace x with the more restricted
structured values (such as pure tensors). We can then repeat to put y on the right, and apply
more relevant extensionality lemmas. A particularly common situation where this trick is useful
is for putting multiplicative structures upon new algebras, such as upon tensor products, tensor
powers, and direct sums. We shall see more concrete examples of this in sections 6.3.3 and 10.3.2.

As it turns out, there is a much more concise way of presenting this reasoning for this example;
we can show outright2 that × is a bilinear map, and write our goal with all the free variables
on the right as (×)(x, y) = flip(×)(x, y), where flip turns one bilinear map into another. We
conclude that it is sufficient to prove that (×) = flip(×), an equality of bilinear maps on which
we can then apply all our extensionality lemmas in one go.

2A fact that was pointed out by Greg Price, who tidied the author’s proofs in [mathlib#7029].

60

Chapter 5. Extensionality

In general, this style of writing functions with no free variables is called “point-free”, and is a
fairly common trick in function programming languages3. To give a more complex example, the
function x 7→ y 7→ f(x)× g(y) can be written in a point-free style as either flip(flip(×) ◦ g) ◦ f or
as flip(◦)(g) ◦ (×) ◦ f . What sets our situation apart from the typical point-free approach is that
we are not simply constructing functions, but morphisms that preserve algebraic operators. As
a result, we need an extensive library of composition operators that are themselves morphisms;
which for linear maps, ties heavily back to the infrastructure described in section 4.3.5.

5.4. Summary
This short chapter summarized the state of the ext tactic in mathlib, and explained how “partially-
applied ext-lemmas” can provide significant value; especially when combined with careful con-
struction of point-free statements,

The author cannot claim credit for the ext tactic, nor for the idea of using “partially-applied
ext lemmas”, but is responsible for extending this pattern through many relevant types in mathlib.
The first sign of such a lemma in mathlib that the author is aware of was added by Chris Hughes
in [mathlib#3408] for the semidirect product, though it was not tagged with @[ext]. Chris
Hughes was also responsible for suggesting a similar lemma for the tensor algebra in review of
[mathlib#3531], though once again it was never tagged @[ext]. Scott Morrison appears to have
realized the value of the @[ext] attribute when generalizing the construction of the tensor algebra
to a quotient of the free algebra in [mathlib#4078]. The first explicit mention of chaining that
the author can find was by Yury Kudryashov, who noted in [mathlib#4741] that it was useful for
working with free modules and algebras.

The author is responsible for documenting the pattern in [mathlib#5484], and for contributing
extensionality lemmas for:

• algebra morphisms from the exterior algebra in [mathlib#4297]
• algebra morphisms from the Clifford algebra in [mathlib#4430]
• linear maps from n-ary direct sums in [mathlib#4821]
• ring morphisms from Z

[√
d
]

in [mathlib#5640]
• linear maps from tensor products in [mathlib#6105] (theorem 5.5)
• linear maps from binary direct sums in [mathlib#6124]
• algebra morphisms from the complex numbers in [mathlib#8105]
• morphisms from quotient constructions in [mathlib#8641]: quotients by subgroups, sub-

modules, lie submodules, and ideals
• algebra morphisms from graded algebras in [mathlib#8783]
• algebra morphisms from the dual numbers in [mathlib#10730]
• algebra morphisms from the trivial square-zero extension in [mathlib#10754]
• linear maps from the exterior algebra in [mathlib#14803]

3For instance, the Haskell Wiki has a page on it at https://wiki.haskell.org/Pointfree.

61

https://github.com/leanprover-community/mathlib/pull/3531#discussion_r460153518
https://wiki.haskell.org/Pointfree

Chapter 5. Extensionality

• algebra morphisms from the tensor product of algebras in [mathlib4#6417]
• algebra morphisms from polynomials over an algebra in [mathlib4#8116]

The ext tactic will be used extensively in many of the constructions in this thesis. Many of the
results in the list above will appear in more detail in part III.

62

6
Graded rings

Equality may perhaps be a right, but no power on earth
can ever turn it into a fact.

(Honoré de Balzac)

This chapter adapts “Graded Rings in Lean’s Dependent Type Theory” [2], which
was joint work with Jujian Zhang.

The vast majority of the text was written by the author, though any remarks
about the Proj construction in algebraic geometry are entirely thanks to Jujian.
The author was largely responsible for the design of the typeclasses described
in this section [mathlib#6053; mathlib#8783; mathlib#9586], though Jujian
contributed a typeclass from section 6.5 [mathlib#10115]. The results about
tensor and Clifford algebras were contributed by the author, while Jujian takes
credit for the results about polynomials and algebraic geometry1.

In principle, dependent type theory should provide an ideal foundation for formalizing graded
rings, where each grade can be of a different type. However, the power of these foundations leaves
a plethora of choices for how to proceed with such a formalization. This chapter explores various
different approaches to how formalization could proceed, and then demonstrates precisely how
the author and Jujian Zhang formalized graded algebras in Lean’s mathlib. Notably, we show
how this formalization was used as an API; allowing us to formalize various graded structures
such as those on tuples, free monoids, tensor algebras, and Clifford algebras.

6.1. Introduction
One way to introduce graded rings and algebras is by noting that they generalize an early staple in
mathematics education; that of single-variate polynomials in X. Any polynomial can be written

1not to be confused with geometric algebra!

63

Chapter 6. Graded rings

as a (finite) weighted sum of powers of X, and multiplication only requires the knowledge that
XmXn = Xm+n.

If we define the N-indexed family of homogeneous polynomials A = (i 7→ {aXi | a : R}), then
we can say “the polynomials in a ring R over X, R[X], are an algebra graded by A”2; by which
we mean:

1. Each of the elements of the family Ai are closed under addition and scalar multiplication
by elements of R.

2. There is a 1 ∈ A0.

3. For any p ∈ Ai and q ∈ Aj , we have pq ∈ Ai+j . Equivalently, as sets AiAj ⊆ Ai+j .

4. Every element p can be expressed uniquely as p =
∑

i pi where pi ∈ Ai.
The above acts as a general definition of an algebra graded by some arbitrary family of submodules
A, which can in general be indexed by any additive monoid ι, not just the natural numbers.

To build some intuition for this generalization, it is worth enumerating some other examples:

Multivariate polynomials, R[X,Y, . . .]. Over two variables we can grade either by the N-indexed
family of elements of homogeneous degree A = (i 7→ {aXjY i−j | a : R, j ≤ i}) where X3

and XY 2 e.t.c. have the same grade, or by an N ⊕ N-indexed family on the individual
variables, A = ((i, j) 7→ {aXiY j | a : R}).

The tensor algebra, T (V). Conventionally we grade this by the N-indexed family where Ai

spans the ith tensor powers V ⊗i.

The exterior algebra,
∧
(V). The exterior algebra is graded in exactly the same way, but when

V is of dimension n we find that Ai for n < i is the trivial submodule.

The Clifford algebra, C`(V,Q)3. We cannot4 use exactly the same approach for the Clifford
algebra, as for a vector v, we have v2 = Q(v), where the LHS would be of grade 2 and the
RHS would be of grade 0. This can be resolved by having just two grades; one corresponding
to sums of “even” monomials (those which are a product of an even number of elements of
V), and one corresponding to sums of odd monomials. Phrased another way, the family is
indexed by5 Z/2Z, the integers modulo two.

Any ring α. Any ring can be equipped with the trivial grading structure, where the index type
contains only one element 0 corresponding to the entire ring.

As this is a thesis about formalization, we will predictably proceed by finding all the different
ways to “pull legs off”6 this definition. By relaxing items 2 and 3, we can talk about gradings of

2Or “a graded algebra of type N over the ring R with graduation A” in the language of [46, III, §3, 1.].
3Where C`(V,Q) is notation to specify the quadratic form Q and vector space V .
4At least, when Q 6= 0. If Q = 0 then C`(V,Q) =

∧
(V) and we can proceed as above.

5Note that literature referring to an N-grading is referring to the grading on
∧
(V) via the canonical module

equivalence.
6https://en.wikipedia.org/wiki/Centipede_mathematics

64

https://en.wikipedia.org/wiki/Centipede_mathematics

Chapter 6. Graded rings

graded_ring A
�

direct_sum.decomposition A
�

set_like.graded_monoid A
�

graded semigroup
(A i : set α)

graded monoid
(A i : set α)

graded additive monoid
(A i : add_submonoid α)

graded additive group
(A i : add_subgroup α)

graded R-module
(A i : submodule R α)

graded semi-ring
(A i : add_submonoid α)

graded ring
(A i : add_subgroup α)

graded R-algebra
(A i : submodule R α)

Figure 6.1.: The algebraic hierarchy of graded objects discussed in this chapter.
The meanings of the typeclasses introduced in section 6.4 for grading α internally by A are
shown as labelled gray regions, with the objects representing each internal grade (that is,
the type of Ai) shown in parentheses.

additive monoids, additive groups ([46, II, §11, 1.]), and R-modules7. By relaxing item 1, we can
additionally talk about gradings by families of additive subgroups, additive submonoids, or even
just sets; which we refer to as graded rings, graded semirings, and graded monoids respectively.
For graded monoids (such as the n-tuples αn or tensor powers M⊗n) there is no summation, so
item 4 is interpreted as the statement that p must belong to exactly one Ai. Figure 6.1 outlines
the connection between these various generalizations.

While the existence of many examples following the same pattern is already a good reason to
formalize that pattern, it is only half the picture; just as important is to have situations where the
generalization itself is necessary. For instance, without a formalization of commutative additive
monoids, we can’t even define what it means to take the sum of a finite set, and would instead
be forced to repeat this definition for N, Z, etc. A particularly motivating example for need a
formalization of graded rings is that of the ProjS construction in algebraic geometry [47, Tag
01M3], a definition which requires a notion of homogeneous ideals, which in turn requires precisely
the notion of graded rings this chapter is about. Another recent motivation appeared in the
“Liquid Tensor Experiment” [48], which required a proof of Gordan’s lemma; one proof of which
goes via graded rings8.

7Some sources use a more general definition of graded R-modules and R-algebras, where R is itself a graded ring
such that RiMj ⊆ Mi+j . For brevity, we will not discuss these here (in essence considering only the special
case when R has the trivial graduation), but our approach would extend to this straightforwardly�.

8In the absence of our work a proof via convexity was used instead.

65

https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/internal/graded_ring.lean#L65?decl=graded_ring
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/internal/decomposition.lean#L48?decl=direct_sum.decomposition
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/graded_monoid.lean#L438?decl=set_like.graded_monoid
https://stacks.math.columbia.edu/tag/01M3
https://stacks.math.columbia.edu/tag/01M3
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/graded_action.lean#L242?decl=graded_module.linear_equiv

Chapter 6. Graded rings

6.2. Prior formalizations
In Coq, [49, p. 3.] refers to graded modules as nat -> FreeModule R in the context of homology.
No mention of graded multiplicative structures appears. A similar formalization of graded modules
exists for Lean 2 in [50, algebra/graded.hlean], although the language has changed substantially
since then, in particular dropping the experimental HoTT mode which [50] builds upon.

In Agda, [51] shows that the axioms of a commutative graded ring are satisfied by a particular
construction, the graded cohomology groups. No attempt seems to be made to provide a general
definition of what it means for an object to satisfy those axioms.

Extensive discussion about formalizing “Commutative Differential Graded algebras”, algebraic
objects with some additional axioms on top of the graded algebras discussed in this chapter, has
taken place on the Lean Zulip Chat [52]. While these discussions refer to a current version of
Lean 3 [6], the ideas explored in [52] never resolved into a contribution to Lean’s monolithic
mathematics library mathlib [39]. It is by this metric that [49; 50] are substantially different in
scope to this work; in those formalizations, a definition was chosen for the particular use case of
interest to the authors, with little regard for interoperability with large amounts of existing code.
Conversely, one of the reasons the work in [52] never made it into mathlib is likely the lack of
applications to verify that the design is the right one. Since the closure of that thread, mathlib
has grown by a factor of five in terms of total lines, and has gained formalizations of many new
objects of interest to us: tensor algebras, Clifford algebras, and tensors powers.

6.3. External gradings
There are two ways to think about a grading in dependent type theory; either as a family of
sets of a single type (internal), or as an indexed family of distinct types. There are merits to
both approaches; which is most useful depends on whether it is more natural to define the single
type then break it into pieces (as with the monoid under concatenation of lists graded by their
length), or to define the family of types then glue them together (as with the monoid under
concatenation of the tuples fin n → α graded by n). A crucial factor in the coherence of mathlib
as a unified library is its ability to translate between multiple ways of stating the same thing, so
we do not want to have to choose between these approaches in an exclusive manner. Thankfully,
the former approach can be represented via the latter; an internal grading can be written as an
external grading over the family of subtypes corresponding to each grade, shown in parentheses
in fig. 6.1. We will revisit this equivalence in section 6.4.

It is worth remembering that when building externally-graded objects in this way, that the
grades are disjoint by definition. If for example our indexed family of types is λ i : ℕ, R (a
family indexed by the naturals, all equal to the same ring), then this is viewed as a countable
sequence of copies of R, which makes this construction exactly analogous to the single-variate
polynomials.

66

Chapter 6. Graded rings

6.3.1. Graded semigroups

Let us now try to develop the framework for talking about externally-graded semigroups9 over
a family of types A indexed by an additive semigroup ι. We would like to be able to express
these via Lean’s “typeclasses”, as this matches how the usual non-graded algebraic structure is
expressed. This means that to talk about a graded monoid, a user might write:

33

def sq {ι : Type*} {A : ι → Type*} [add_semigroup ι] [g_semigroup A]

(i : ι) (x : A i) : A (i + i) :=

g_semigroup.mul x x

To explain this syntax briefly; sq names the definition, {name : type} and (name : type) introduce
implicit and explicit variables, [type] introduces a typeclass variable, the trailing : prefixes the
result type, and := prefixes the value of the definition. Typeclass variables are special; the [add_

semigroup ι] variable is used to define the meaning of i + i via mathlib’s algebra framework,
while the g_semigroup.mul would be defined by the [g_semigroup A] variable. A user calling this
sq function might write sq _ x, where _ acts as a wildcard which Lean works out automatically by
looking at x. The same mechanism is used to infer the implicit ι and A arguments, but typeclass
search is used to populate the two arguments in square brackets; for instance, if ι := ℕ then
Lean finds nat.add_semigroup : add_semigroup ℕ�. More thorough introductions to typeclasses
in Lean and mathlib can be found in [45, §2] and chapter 4.

Attempting to define a new g_semigroup A typeclass by directly writing down item 3 and a
suitable associativity axiom as

33

variables {ι : Type*} (A : ι → Type*)

class g_semigroup [add_semigroup ι] :=

(mul {i j} : A i → A j → A (i + j))

(mul_assoc {i j k} (x : A i) (y : A j) (z : A k) :

mul (mul x y) z = mul x (mul y z))

leads to� the error “term mul x (mul y z) has type A (i + (j + k)) but is expected to have
type A ((i + j) + k)”. While these are “obviously” equal, that’s not enough for Lean; for the
statement to type-check, we need the types to be definitionally equal. We would have similar
problems with A (i + 0) and A i if we were trying to prove mul x one = x for a graded monoid.
To escape this problem, we could:

1. Use heterogeneous equality (denoted ==), which allows us to express equality between
distinct types:�

33

class g_semigroup [add_semigroup ι] :=

(mul {i j : ι} : A i → A j → A (i + j))

(mul_assoc {i j k : ι} (x : A i) (y : A j) (z : A k) :

mul (mul x y) z == mul x (mul y z))

2. Express the equality in terms of sigma types or dependent pairs, denoted Σ i, A i:�

9Chosen for brevity due to having the fewest axioms, not because they are interesting.

67

https://github.com/leanprover-community/mathlib/blob/dba3dcef3e1932234476296250cf52f61c0a6d87/src/data/nat/basic.lean#L87?decl=nat.add_semigroup
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/graded_semigroup.lean#L9?decl=fails.g_semigroup
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/graded_semigroup.lean#L16?decl=heq.g_semigroup
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/graded_semigroup.lean#L21?decl=sigma.g_semigroup

Chapter 6. Graded rings

33

class g_semigroup [add_semigroup ι] :=

(mul {i j : ι} : A i → A j → A (i + j))

(mul_assoc {i j k : ι} (x : A i) (y : A j) (z : A k) :

(⟨_, mul (mul x y) z⟩ : Σ i, A i) = ⟨_, mul x (mul y z)⟩)

3. Express the grading constraint as an equality on sigma types:�

33

class g_semigroup [add_semigroup ι] extends semigroup (Σ i, A i) :=

(fst_mul {i j : ι} (x : A i) (y : A j) :

(⟨_, x⟩ * ⟨_, y⟩ : Σ i, A i).fst = i + j)

4. Provide an explicit proof that the equality is type correct using the recursor for equality,
eq.rec:�

33

class g_semigroup [add_semigroup ι] :=

(mul {i j : ι} : A i → A j → A (i + j))

(mul_assoc {i j k : ι} (x : A i) (y : A j) (z : A k) :

(add_assoc i j k).rec (mul (mul x y) z) = mul x (mul y z))

5. Store a canonical map between objects of the “same” grade to use instead of using eq.rec,
to allow better definitional control:�

33

class g_semigroup [add_semigroup ι] :=

(cast {i j : ι} (h : i = j) : A i → A j)

(cast_rfl {i} (x : A i) : cast rfl x = x)

(mul {i j : ι} : A i → A j → A (i + j))

(mul_assoc {i j k : ι} (x : A i) (y : A j) (z : A k) :

cast (add_assoc i j k) (mul (mul x y) z) = mul x (mul y z))

6. Take an additional index into mul and a proof that it is equal to i + j:�

33

class g_semigroup [add_semigroup ι] :=

(mul {i j k : ι} (h : i + j = k) : A i → A j → A k)

(mul_assoc {i j k ij jk ijk : ι}

(hij : i + j = ij) (hjk : j + k = jk)

(hi_jk : i + jk = ijk) (hij_k : ij + k = ijk)

(x : A i) (y : A j) (z : A k) :

(mul hij_k (mul hij x y) z) = mul hi_jk x (mul hjk y z))

Many of these options are derived from the discussions in [52]. When deciding between these
options, we need to consider both the ease of providing an instance with instance : g_semigroup A,
and the ease of consumer working with one using [g_semigroup A]. Note that it is straightforward
to expose different interfaces to the consumer and producer, and provide a layer of translation
in between. This is especially the case when the interfaces differ only in their statement of the
propositional fields. Table 6.2 outlines a rough comparison between these approaches.

Taking a step back from this problem, we also need to decide on a spelling for the consumer, as
writing mul instead of a multiplication symbol is hardly pleasant. There are essentially two options

68

https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/graded_semigroup.lean#L26?decl=extends.g_semigroup
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/graded_semigroup.lean#L30?decl=eq.rec.g_semigroup
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/graded_semigroup.lean#L35?decl=cast.g_semigroup
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/graded_semigroup.lean#L42?decl=h : i+j=k.g_semigroup

Chapter 6. Graded rings

Approach item 1
==

item 2
Σ i, A i

item 3
extends

item 4
eq.rec

item 5
cast

item 6
h : i+j=k

h : (i+j)+k=i+(j+k)

needed by producer producer — — — consumer

Estimated difficulty
for the producer medium harder easier harder easier medium

Directions of consumer
rw tactic use 0 2 2 1 1 2

Table 6.2.: Merits of the various approaches to defining g_semigroup

“Producer” refers to the code providing the instance : g_semigroup A, while “consumer”
refers to the code with a [g_semigroup A] argument.

here: either introduce new notation for our graded mul, or hook into the existing * notation. The
latter is a far more appealing option, as it means we can reuse all the lemmas we have about * by
providing the appropriate algebraic typeclasses. The only catch is that the existing * notation
requires the operation to be homogeneous; acting on a single type, rather than three elements of
a family10.

To achieve this homogenization, we can use the built-in sigma type of dependent pairs, storing
the grade of the monoid alongside the value at that grade such that x : A i is represented by
sigma.mk i x : Σ i, A i.

33

instance g_semigroup.to_semigroup [add_semigroup ι] [g_semigroup A] :

semigroup (Σ i, A i) :=

{ mul := λ (x y : Σ i, A i), ⟨x.fst + y.fst, g_semigroup.mul x.snd y.snd,

mul_assoc := λ (x y : Σ i, A i), sorry }

If we choose item 3 from table 6.2, then this code is generated for us automatically! However,
the fact that the grade of the multiplication is known only propositionally and not definitionally
can make things harder in section 6.3.3, so we avoid this choice. As the next most appealing
option, choosing item 2 makes the sorry above11 fall out immediately, and so this is what mathlib
does. This decision is far from final, but the best way to compare the option of table 6.2 is to
thoroughly implement one of them, and then come back and see whether changing the definition
to something different makes the existing proofs better or worse.

6.3.2. Graded monoids

In reality, we do not define gsemigroup at all in mathlib, and jump straight to graded monoids
due to lack of need for the former. We also don’t actually put the instance on the sigma type, as
this would not be a sufficiently canonical choice to be worthy of a global instance. Instead, we
define graded_monoid A� as an alias for sigma A, and place the instances on that. By splitting
apart the typeclasses a little and interleaving the instances for graded_monoid A:�

10Lean 4 lifts this notation restriction, but the algebraic typeclasses provided by mathlib would need reworking.
11The syntax in Lean for an incomplete proof.

69

https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/graded_monoid.lean#L90?decl=graded_monoid
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/graded_monoid.lean#L106?decl=graded_monoid.ghas_one

Chapter 6. Graded rings

33

class ghas_one [has_zero ι] := (one : A 0)

class ghas_mul [has_add ι] := (mul {i j} : A i → A j → A (i + j))

instance ghas_one.to_has_one [has_zero ι] [ghas_one A] :

has_one (graded_monoid A) := { one := ⟨_, ghas_one.one⟩ }

instance ghas_mul.to_has_mul [has_add ι] [ghas_mul A] :

has_mul (graded_monoid A) := { mul := λ x y, ⟨_, ghas_mul.mul x.snd y.snd⟩ }

we make the notation for the instance much more pleasant

33

class gmonoid [add_semigroup ι] extends ghas_one A, ghas_mul A :=

(one_mul (a : graded_monoid A) : 1 * a = a)

(mul_one (a : graded_monoid A) : a * 1 = a)

(mul_assoc (a b c : graded_monoid A) : a * b * c = a * (b * c))

It is worth remembering that while this may look identical to the definition of a regular monoid, it
is constraining the grade-preserving behavior of the multiplication by construction. As is always
the case with formalization, it is never quite as simple as you would hope it would be. In fact,
the definition� of gmonoid in mathlib contains three additional fields!

33

(gnpow : Π (n : ℕ) {i}, A i → A (n • i))

(gnpow_zero' : Π (a : graded_monoid A), graded_monoid.mk _ (gnpow 0 a.snd) = 1)

(gnpow_succ' : Π (n : ℕ) (a : graded_monoid A),

(graded_monoid.mk _ $ gnpow n.succ a.snd) = a * ⟨_, gnpow n a.snd⟩)

These describe the power operator by the natural numbers, and ensure that its grade too is known
definitionally following the “forgetful inheritance” [44] pattern, the relevance of which is explored
in section 4.5.2.
Example 6.1 (the n-tuples). This typeclass allows us to express the graded monoid structure
of the n-tuples under concatenation, as�

33

instance : gmonoid (λ n : ℕ, fin n → α) :=

{ one := ![], -- the empty tuple

mul := λ i j a b, fin.add_cases a b,

..sorry /- boring proofs -/ }

6.3.3. Graded (semi)rings

For graded rings, we do not run into any new equality problems, as addition remains within a
grade. To state the requirement for a family of types to represent a graded ring, we can simply
extend the monoid structure from earlier:�

70

https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/graded_monoid.lean#L158?decl=graded_monoid.gmonoid
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/tuple.lean#L116?decl=fin.tuple.gmonoid
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/external/graded_ring.lean#L108?decl=direct_sum.gsemiring

Chapter 6. Graded rings

33

class gsemiring [add_monoid ι] [Π i, add_comm_monoid (A i)]

extends gmonoid A :=

(mul_zero : ∀ {i j} (a : A i), mul a (0 : A j) = 0)

(zero_mul : ∀ {i j} (b : A j), mul (0 : A i) b = 0)

(mul_add : ∀ {i j} (a : A i) (b c : A j), mul a (b + c) = mul a b + mul a c)

(add_mul : ∀ {i j} (a b : A i) (c : A j), mul (a + b) c = mul a c + mul b c)

-- For "forgetful inheritance" like the previous `gnpow` field

(nat_cast : ℕ → A 0) (nat_cast_zero : sorry) (nat_cast_succ : sorry)

We almost do not need any axioms about negation; to work with a graded ring as opposed to a
graded semiring, the user could write [Π i, add_comm_group (A i)] [gsemiring A]. Unfortunately,
our hand is forced by “forgetful inheritance” to define gring� anyway in order to add an int_cast

operation and associated axioms.
Just as we used graded_monoid A in section 6.3.1 to bundle our graded monoid with its grade

to enable reuse of the monoid API, we’d like to be able to enable reuse of the semiring API on
graded semirings. We cannot use graded_monoid A here, as in a graded ring an element can consist
of distinct grades added together; instead we use direct_sum ι A, with notation ⨁ i, A i. Here,
the element x : A i is represented by direct_sum.of A i x. This comes with all the additive
structure we need already; all we have to do is extend our multiplicative structure onto it linearly,
with our end goal being to produce a semiring (⨁ i, A i) instance.

To do this, we first promote our mul to a bundled homomorphism (section 3.4.3) that is additive
in each argument�

33

def gmul_hom [gsemiring R] {i j} : A i →+ A j →+ A (i + j) :=

{ to_fun := λ a,

{ to_fun := λ b, gsemiring.mul a b,

map_zero' := gsemiring.mul_zero _,

map_add' := gsemiring.mul_add _ },

map_zero' := add_monoid_hom.ext $ λ a, gsemiring.zero_mul a,

map_add' := λ a₁ a₂, add_monoid_hom.ext $ λ b, gsemiring.add_mul _ _ _}

as this allows us to lift this map to consume and produce elements of the direct sum as:�

33

def mul_hom : (⨁ i, A i) →+ (⨁ i, A i) →+ ⨁ i, A i :=

direct_sum.to_add_monoid $ λ i,

add_monoid_hom.flip $ direct_sum.to_add_monoid $ λ j, add_monoid_hom.flip $

(direct_sum.of A _).comp_hom.comp $ gmul_hom A

Unfortunately working with bundled maps in mathlib forces you to write things in the rather
unreadable point-free style as above. The benefit of working in a theorem prover is that we can
at least verify that something unreadable still behaves as we want:�

33
lemma mul_hom_of_of {i j} (a : A i) (b : A j) :

mul_hom A (of _ i a) (of _ j b) = of _ (i + j) (gsemiring.mul a b) := sorry

It might feel like we’re on the home stretch to providing the semiring instance; indeed, the proofs
relating multiplication and the additive structure follow trivially from mul_hom. Unfortunately,
we’re now faced with actually using the API we built in section 6.3.2 to prove the multiplicative

71

https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/external/graded_ring.lean#L119?decl=direct_sum.gring
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/external/graded_ring.lean#L155?decl=direct_sum.gmul_hom
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/external/graded_ring.lean#L164?decl=direct_sum.mul_hom
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/external/graded_ring.lean#L181?decl=direct_sum.mul_hom_of_of

Chapter 6. Graded rings

properties! The key result we need to do this is that our two notions of equality are equivalent;
that is,�

33

lemma of_eq_of_graded_monoid_eq {i j : ι} {a : A i} {b : A j}

(h : graded_monoid.mk i a = graded_monoid.mk j b) :

direct_sum.of A i a = direct_sum.of A j b := sorry

After once again fighting against point-free nonsense to turn associativity into equality of two
tri-additive maps, we can use the ext tactic to reduce our problem to associativity of three terms
of the form of A i x:�

33

private lemma mul_assoc (a b c : ⨁ i, A i) : a * b * c = a * (b * c) :=

-- `λ a b c, a * b * c = λ a b c, a * (b * c)` as bundled homomorphisms

suffices (mul_hom A).comp_hom.comp (mul_hom A)

= (add_monoid_hom.comp_hom flip_hom $

(mul_hom A).flip.comp_hom.comp (mul_hom A)).flip,

from fun_like.congr_fun (fun_like.congr_fun (fun_like.congr_fun this a) b) c,

begin

ext ai ax bi bx ci cx : 6,

show mul_hom A (mul_hom A (of A ai ax) (of A bi bx)) (of A ci cx) =

mul_hom A (of A ai ax) (mul_hom A (of A bi bx) (of A ci cx)),

from which the rest follows using our previous results:

33

rw [mul_hom_of_of, mul_hom_of_of, mul_hom_of_of, mul_hom_of_of],

exact of_eq_of_graded_monoid_eq

(mul_assoc (graded_monoid.mk ai ax) ⟨bi, bx⟩ ⟨ci, cx⟩),

end

A similar approach can be used to prove the mul_one and one_mul fields in order to finish the
construction of semiring (⨁ i, A i). The “point-free nonsense” approach is not the only path
available to us; but the alternative of using induction creates annoying side-goals to prove that
the map is additive.

There is another important construction we will want for working with this direct sum
representation of a graded ring; a way to construct a ring homomorphism out of the graded ring
given a suitable family of homomorphisms from each piece. This can be written as:�

33

def direct_sum.to_semiring

(f : Π {i}, A i →+ R)

(hone : f gsemiring.one = 1)

(hmul : ∀ {i j} (ai : A i) (aj : A j), f (gsemiring.mul ai aj) = f ai * f aj) :

(⨁ i, A i) →+* R :=

{ map_one' := sorry, map_mul' := sorry, .. direct_sum.to_add_monoid f }

We will find this instrumental for relating external and internal direct sums in section 6.4.4.

72

https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/external/graded_ring.lean#L130?decl=direct_sum.of_eq_of_graded_monoid_eq
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/external/graded_ring.lean#L220?decl=_private.mul_assoc
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/external/graded_ring.lean#L536?decl=direct_sum.to_semiring

Chapter 6. Graded rings

Example 6.2 (the nth tensor powers). This typeclass allows us to express the graded ring
structure of the nth tensor power over an R-module V in [mathlib#10255] as�

33instance : gsemiring (λ n : ℕ, ⨂[R]^n V) := sorry

We can then show with the aid of direct_sum.to_semiring that T (V) is isomorphic as a ring
(and algebra) to

⊕
n V

⊗n; that is tensor_algebra R V ≃ₐ[R] (⨁ n, ⨂[R]^n V)�.

6.4. Internal gradings

6.4.1. Decompositions of sets

For an external decomposition with no algebraic structure, the task is simple; a unique decom-
position of a type α into its pieces A : ι → Type* can be spelled as the equivalence to a sigma
type, decompose : α ≃ Σ i : ι, A i. For an internal decomposition where A : ι → set α, we
have some other options. If we don’t care about a constructive decomposition and are happy with
a classical one, we can just state that the components span the entire type and are disjoint, as:

33(⋃ i, A i) = set.univ ∧ pairwise (disjoint on A)

If we do care about constructiveness, we can instead have a function grade : α → ι that respects
∀ (a : α) (i : ι), a ∈ A i ↔ grade a = i. Whichever approach we pick, it is straightforward
to recover the externally-graded viewpoint via the map decompose : α ≃ Σ i : ι, ↥(A i). Here,
↥ is the operator that lets us view a set as a subtype of the type of its elements.

6.4.2. Graded monoids

A preliminary attempt at formalizing an internal multiplicative grading structure might look like

33

class set.graded_monoid [monoid M] [add_monoid ι] (A : ι → set M) : Prop :=

(one_mem : 1 ∈ A 0)

(mul_mem : ∀ ⦃i j : ι⦄ {gi gj : M}, gi ∈ A i → gj ∈ A j → gi * gj ∈ A (i + j))

This works fine for graded monoids; but for graded semirings, rings, and algebras we need to
apply the additional constraints that each A i is closed under the appropriate operations.

To avoid having to write separate typeclasses for each case and ending up with our API
in triplicate, we instead generalize over A : ι → set M; with the goal being able to talk about
A : ι → add_submonoid R, A : ι → add_subgroup R, and A : ι → submodule S R in a unified way.
As well as avoiding the need for three different typeclasses, this also means we can reuse all
the theory we already have about add_submonoid, add_subgroup, and submodule. To do that, we
introduce a set_like class, which was one of the inspirations for the fun_like generalization
described in [45, §6.3]. This class lets us express that elements s of a type S has a canonical
interpretation as a set ↑s : set α, and is defined as:�

73

https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/tensor_power.lean#L242?decl=tensor_power.gsemiring
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/tensor_power_equiv.lean#L195?decl=tensor_algebra.equiv_direct_sum
https://github.com/leanprover-community/mathlib/blob/dba3dcef3e1932234476296250cf52f61c0a6d87/src/data/set_like/basic.lean#L84?decl=set_like

Chapter 6. Graded rings

33

class set_like (S : Type*) (α : out_param Type*) :=

(coe : S → set α) -- the function that is used for `↑` coercion notation

(coe_injective' : function.injective coe)

This equips s : S with membership notation a ∈ s : Prop and a coercion to type ↥s : Type*,
and permits us to write�

33

class set_like.graded_monoid {ι M S : Type*}

[set_like S M] [monoid M] [add_monoid ι] (A : ι → S) : Prop :=

(one_mem : 1 ∈ A 0)

(mul_mem : ∀ ⦃i j : ι⦄ {gi gj : M}, gi ∈ A i → gj ∈ A j → gi * gj ∈ A (i + j))

At this point, we can deliver on the earlier claim that the internal viewpoint can be expressed
via the external viewpoint. To do this, we show that the family of subtypes λ i, ↥(A i) has a
graded multiplicative structure, as:�

33

-- this implies `monoid (graded_monoid (λ i, ↥(A i)))` via `gmonoid.to_monoid`

instance set_like.gmonoid [set_like S M] [monoid M] [add_monoid ι]

(A : ι → S) [set_like.graded_monoid A] :

gmonoid (λ i, ↥(A i)) :=

{ one := ⟨1, set_like.graded_monoid.one_mem,

mul := λ i j a b, ⟨(a * b : R), set_like.graded_monoid.mul_mem a.prop b.prop,

mul_assoc := λ ⟨i, a, ha⟩ ⟨j, b, hb⟩ ⟨k, c, hc⟩,

sigma.subtype_ext (add_assoc _ _ _) (mul_assoc _ _ _),

..sorry /- etc -/ }

Note here that we are paying the cost outlined in the first row of table 6.2 of having to reprove
associativity of addition of the grades, which is a mark against our choice of item 2.

Example 6.3 (the free monoid over α). This typeclass allows us to expressa the internal graded
monoid structure of the free monoid, with elements graded by the number of generators�

33

instance :

set_like.graded_monoid

(λ i : ℕ, (set.range (free_monoid.of : α → free_monoid α)) ^ i) :=

{ one_mem := by rw [pow_zero, set.mem_one],

mul_mem := λ i j x y hx hy, by { rw pow_add, exact set.mul_mem_mul hx hy} }

aAfter enabling the appropriate by-default-disabled instances.

We are not quite done yet; we have shown that the subtypes can be glued together to form an
object with graded multiplication, but the set_like.graded_monoid typeclass above does nothing
to ensure that the glued-together type graded_monoid (λ i, ↥(A i)) is in bijection with M. We
can reuse either the classical or constructive approach from section 6.4.1, but with our new
monoid (graded_monoid (λ i, ↥(A i))) instance we can promote the equivalence decompose

: α ≃ Σ i : ι, ↥(A i) to a multiplicative isomorphism, stated as decompose : α ≃* graded_

monoid (λ i, ↥(A i)).

74

https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/graded_monoid.lean#L438?decl=set_like.graded_monoid
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/graded_monoid.lean#L472?decl=set_like.gmonoid
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/free_monoid.lean#L15?decl=free_monoid.graded_monoid

Chapter 6. Graded rings

6.4.3. Decompositions of additive monoids and R-modules

For a unique decomposition with an additive structure, we cannot use the same approach as
section 6.4.1 but instead need to decompose into a direct sum, as decompose : α ≃+ ⨁ i :

ι, ↥(A i). Let us consider the internal decomposition of an additive group α into the family
A : ι → add_subgroup α. We need to be a little more careful when describing the disjointness
condition, as what we actually require is that every component is disjoint (in the sense of having
trivial intersection {0}) from the span of all the others. We can spell that as

33(⨆ i, A i) = ⊤ ∧ complete_lattice.independent A

but for additive submonoids this condition, while necessary, is still not sufficient; consider when
A+ = {z : Z | 0 ≤ z} and A− = {z : Z | 0 ≥ z}, which are disjoint and span all of Z, but
clearly do not permit a decomposition� [mathlib#9214]. As such, we cannot use this as our
definition. Instead, we require that the canonical map from ⨁ i : ι, A i to α (defined as roughly
λ x, ∑ i, ↑(x i)) is bijective.

Once again we’re on the precipice of stating things in triplicate, as we want to state this
condition (and the consequences of it) for add_monoid α and submodule R α as well to cover the
cases on the right of fig. 6.1. Until very recently, stating this condition in triplicate was exactly
what mathlib did; but thanks to [mathlib#11750] which transfers the success in [45] from fun_like

to set_like, we can now generalize over add_subgroup α as S where (S : Type*) [set_like S α]

[add_submonoid_class S α]. This lets us define a single canonical map coe_add_monoid_hom� that
works for all three cases as

33

protected def coe_add_monoid_hom [add_comm_monoid α]

[set_like S α] [add_submonoid_class S α] (A : ι → S) :

(⨁ i, A i) →+ M :=

direct_sum.to_add_monoid (λ i, add_submonoid_class.subtype (A i))

which in turn allows us to state our condition just once to cover all three cases. We can state it
either constructively, by carrying around an explicit inverse�:

33

class decomposition (A : ι → S) :=

(decompose' : α → ⨁ i, A i) -- split elements into their grades

(left_inv : function.left_inverse (coe_add_monoid_hom A) decompose')

(right_inv : function.right_inverse (coe_add_monoid_hom A) decompose')

or classically by simply proving bijectivity�. We provide a proof in mathlib that on submodules over
additive groups the complete_lattice.independent formulation is equivalent� to these definitions.

6.4.4. Graded (semi)rings

To talk about a semiring with an internally grade-compatible multiplication, we thankfully need
to define no further typeclasses; we can write

33
variables {ι R S : Type*} [add_monoid ι] [semiring R] [set_like S R]

variables [add_submonoid_class S R] (A : ι → S) [set_like.graded_monoid A]

75

https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/disjoint_counterexample.lean#L99?decl=direct_sum.is_internal_contradiction
https://github.com/leanprover-community/mathlib/blob/dba3dcef3e1932234476296250cf52f61c0a6d87/src/algebra/direct_sum/basic.lean#L251?decl=direct_sum.coe_add_monoid_hom
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/internal/decomposition.lean#L48?decl=direct_sum.decomposition
https://github.com/leanprover-community/mathlib/blob/dba3dcef3e1932234476296250cf52f61c0a6d87/src/algebra/direct_sum/basic.lean#L275?decl=direct_sum.is_internal
https://github.com/leanprover-community/mathlib/blob/dba3dcef3e1932234476296250cf52f61c0a6d87/src/algebra/direct_sum/module.lean#L339?decl=direct_sum.is_internal_submodule_iff_independent_and_supr_eq_top

Chapter 6. Graded rings

where set_like.graded_monoid handles our conditions on the multiplicative structure, add_

submonoid_class handles our conditions on the additive structure, and semiring R ensures the
compatibility between the two. We’d like to end up with a gsemiring (λ i, ↥(A i)) instance
as a result of these hypotheses so as to also have a semiring (⨁ i, ↥(A i)) instance, which we
achieve as�

33

instance set_like.gsemiring : direct_sum.gsemiring (λ i, ↥(A i)) :=

{ mul_zero := λ i j _, subtype.ext (mul_zero _),

zero_mul := λ i j _, subtype.ext (zero_mul _),

mul_add := λ i j _ _ _, subtype.ext (mul_add _ _ _),

add_mul := λ i j _ _ _, subtype.ext (add_mul _ _ _),

..set_like.gmonoid A }

Once again, the introduction of add_submonoid_class excused us from needing three copies of
this definition.

Now that we have this instance, we can build the canonical ring morphism from ⨁ i, ↥(A i) to R

that amounts to summing the elements from each grade (after passing them through the canonical
additive morphism from the subtype), building upon the direct_sum.to_semiring definition at
the end of section 6.3.3:�

33

def direct_sum.coe_ring_hom [add_monoid ι] [semiring R] [set_like S R]

[add_submonoid_class S R] (A : ι → S) [set_like.graded_monoid A] :

(⨁ i, ↥(A i)) →+* R :=

direct_sum.to_semiring

(λ i, add_submonoid_class.subtype (A i)) rfl (λ _ _ _ _, rfl)

The direct_sum.coe_add_monoid_hom we mention in section 6.4.3 has a definitionally equal under-
lying function to this, meaning we can reuse the decomposition A from that section defined in
terms of the former to obtain the canonical ring isomorphism decompose_ring_equiv : R ≃+* ⨁

i, ↥(A i)� between an internally-graded ring R and the direct sum of its grades ⨁ i, ↥(A i).
For convenience, we provide a single typeclass that provides access to this operation:�

33class graded_ring (A : ι → σ) extends graded_monoid A, decomposition A.

Among other functions and lemmas which build on this convenience, we provide projection maps
as additive maps proj A i : R →+ R� so that any x : R can be written as x =

∑
i xi, with xi

being the i-th projection of x with respect to grade A, without having to explicitly go via the
direct sum of subtypes ⨁ i, ↥(A i).

6.5. Graded R-algebras
This chapter would not be complete without building external and internal graded R-algebras on
top of the graded rings; indeed, we have added definitions of these to mathlib, as the typeclass
galgebra�, the instance submodule.galgebra�, and the shorthand graded_algebra�; but the
process of defining these presented no new challenges over those already faced when defining
graded rings. Just as we were able to recover a ring isomorphism in section 6.4.4, these definitions

76

https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/internal/internal.lean#L98?decl=set_like.gsemiring
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/internal/internal.lean#L136?decl=direct_sum.coe_ring_hom
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/internal/graded_ring.lean#L72?decl=direct_sum.decompose_ring_equiv
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/internal/graded_ring.lean#L65?decl=graded_ring
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/internal/graded_ring.lean#L90?decl=graded_ring.proj
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/external/graded_algebra.lean#L48?decl=direct_sum.galgebra
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/internal/internal.lean#L163?decl=submodule.galgebra
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/internal/graded_ring.lean#L116?decl=graded_algebra

Chapter 6. Graded rings

let us recover the analogous R-algebra isomorphism decompose_alg_equiv : X ≃ₐ[R] ⨁ i, ↥(A

i)�.

Example 6.4 (the multivariate polynomials). Returning to the examples in section 6.1, we
can define the homogeneous graduation�:

33instance : graded_algebra (λ i : ℕ, homogeneous_submodule σ R i) := sorry

where σ represents the variables in the multivariate polynomial ring and homogeneous_submodule

σ R i the homogeneous polynomials of degree i.

Example 6.5 (the tensor algebra T (V)). Given ι R as the canonical map V → T (V), we
write the typical internal grading as:�

33
instance : graded_algebra

((^) (ι R : M →ₗ[R] tensor_algebra R M).range : ℕ → submodule R _) := sorry

Example 6.6 (the Clifford algebra C`(V,Q)). Similarly, we can writea��

33

def even_odd (i : zmod 2) : submodule R (clifford_algebra Q) :=

⨆ (j : {n : ℕ // ↑n = i}), (ι Q).range ^ (j : ℕ)

instance : graded_algebra (clifford_algebra.even_odd Q) := sorry

where ι Q is a similar canonical map, and even_odd 0 and even_odd 1 are the even and odd
submodules respectively.

aThus resolving the further work in [10, §8.1].

6.6. Summary
This chapter outlined the substantial amount of busy-work required to define the various types
of graded structure in mathlib, and the various design choices made along the way. Instead
of choosing between internal and external grading, we opted to use the latter to implement
the former. When it comes to classical vs constructive decompositions, we opted to have both,
just like mathlib has classical vs constructive finite sets. Finally, for stating equality between
non-definitionally-equal grades, we opted to use sigma types.

To verify that our design decisions are sensible, we demonstrated a variety of results stated
using our new typeclasses. While not discussed in detail in this chapter, our supplemental
repository includes an extended example by Jujian Zhang of a preliminary development of the
Proj construction in algebraic geometry�, which using the result from example 6.4 culminates in
defining the projective n-space�. The success of this formalization indicates that the design of
graded objects is coherent with other theories in mathlib.

A snapshot of the unabridged code from this work, permalinked throughout via “�”, is available
at https://github.com/eric-wieser/lean-graded-rings. It comprises around 1150 sloc12 of API
development, 1250 sloc of applications, and 5300 sloc of the extended Proj example. Permalinks

12source lines of code

77

https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/internal/graded_ring.lean#L144?decl=direct_sum.decompose_alg_equiv
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/multivariate_polynomial/grading.lean#L91?decl=mv_polynomial.graded_algebra
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/tensor_algebra.lean#L40?decl=tensor_algebra.graded_algebra
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/clifford_algebra.lean#L30?decl=clifford_algebra.even_odd
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/clifford_algebra.lean#L114?decl=clifford_algebra.graded_algebra
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/Proj/Proj.lean#L126?decl=algebraic_geometry.Proj.to_Scheme
https://github.com/eric-wieser/lean-graded-rings/blob/cf463b1b9317e16499a51b20037ad8319311bd21/src/cicm2022/examples/Proj/n_space.lean#L20?decl=algebraic_geometry.projective_space
https://github.com/eric-wieser/lean-graded-rings

Chapter 6. Graded rings

resembling “�” refer to declarations in mathlib itself that were infeasible to extract into our
isolated repository. Much of this code has already been integrated into mathlib over the course of
over 30 pull requests13.

The monolithic nature of mathlib development means that our design decisions are easy to
revisit at a later date, as the assumption is already that code written against one version of
mathlib is not guaranteed to work without modification on a later version. Meanwhile, the
act of having made the decisions enables downstream work to progress; as well as unblocking
diverging formalization projects by the two authors14, our foundations have allowed mathlib to
gain formalizations by other contributors about various internal decompositions in inner product
spaces and torsion modules.

We shall revisit graded rings later in this thesis, in sections 9.5 and 10.3.

13Tracked in https://github.com/leanprover-community/mathlib/projects/12.
14In geometric algebra and algebraic geometry, respectively!

78

https://github.com/leanprover-community/mathlib/projects/12

7
Multiple-inheritance hazards in
dependently-typed algebraic hierarchies

The computing scientist’s main challenge is not to get
confused by the complexities of his own making.

(Edsger W. Dijkstra)

This chapter is reproduced from “Multiple-Inheritance Hazards in Dependently-
Typed Algebraic Hierarchies” [3]. Section 7.4.3 corrects the incorrect claim made
by [3, §4.3]

Abstract algebra provides a large hierarchy of properties that a collection of objects can satisfy,
such as forming an abelian group or a semiring. These classifications can be arranged into a broad
and typically acyclic directed graph. This graph perspective encodes naturally in the typeclass
system of theorem provers such as Lean, where nodes can be represented as structures (or records)
containing the requisite axioms. This design inevitably needs some form of multiple inheritance;
a ring is both a semiring and an abelian group.

In the presence of dependently-typed typeclasses that themselves consume typeclasses as type-
parameters, such as a vector space typeclass which assumes the presence of an existing additive
structure, the implementation details of structure multiple inheritance matter. The type of the
outer typeclass is influenced by the path taken to resolve the typeclasses it consumes. Unless all
possible paths are considered judgmentally equal, this is a recipe for disaster.

This chapter provides a concrete explanation of how these situations arise (reduced from real
examples in mathlib), compares implementation approaches for multiple inheritance by whether
judgmental equality is preserved, and outlines solutions (notably: kernel support for η-reduction
of structures) to the problems discovered.

79

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

7.1. Introduction
It becomes clear very early in the development of mathematical libraries that a generalization
over algebraic properties is essential; as soon as we are able to speak about N and Z, we will
want to have available that a + b = b + a whether a, b : N or a, b : Z, and it would be strongly
preferable that we can refer to this property by a single name.

The generalization we seek is of course well-studied as the field of abstract algebra, and the
commutativity property above can be phrased as “N and Z are both semirings”, or using language
more precise to the specific property we care about “N and Z are both abelian monoids”. At least
when considering only those which operate on a single carrier type, algebraic structures can be
connected into a directed graph; all rings are semirings and abelian groups, so we can draw a
pair of edges from “ring” to “semiring” and “abelian group”. An illustration of the depth and
breadth of such a graph can be seen in [39, fig. 1], while a reduced example that we will use in
this chapter can be seen in fig. 7.1.

Encoding this directed graph into the machinery of a particular theorem prover can be done in
multiple ways, which are outlined in [45, §1] and presented with example code across a variety of
languages in [53, fig. 1]. This chapter focuses on the typeclass approach used by mathlib [39] in
the Lean 3 theorem prover [6]; though the observations generalize to other implementations in
dependent type theory built upon “structure” types.

In this approach, the graph is pruned to be acyclic, and then a typeclass is created for each
node carrying its operators (data fields) and the properties they satisfy (proof fields). The edges
correspond to functions converting from stronger structures to weaker structures, each registered
as a typeclass instance. This encodes naturally in “record” or “structure” types with multiple
inheritance, where we can write down the desired edges declaratively in the form of a list of base
structures, and have the language generate the necessary “forgetful” instances automatically. A
simple example of this can be found in [45, §4].

Unfortunately, the devil is in the details; in Lean, Coq, Agda, and Isabelle, support for multiple
inheritance is not part of the underlying type theory, so types that use multiple inheritance have
to be translated by the elaborator into inductive types that do not. There are multiple ways to
perform such a translation, and the choice is not inconsequential.

In section 7.2 we outline two such approaches, and show how they can each be used to construct
a much-reduced version of mathlib’s abstract algebra library. Section 7.3 introduces a more
complex use of a typeclass from mathlib, and demonstrates how in the absence of special kernel
support for η-reduction on structure types, its design is incompatible with “nested” approach
to structures. Section 7.4 outlines some workarounds that permit the “nested” approach to be
used even in the absence of this support. Section 7.5 explains how the problem is not unique to
typeclass-based approaches.

The problems explored here are far from hypothetical; the migration of mathlib from Lean 3 to
Lean 4 [7] forces a switch from the approach in section 7.2.1 to that in section 7.2.2, which has
presented a significant stumbling block [lean4#2074].

80

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

add_monoidadd_group

add_comm_monoidadd_comm_group

semiringring

Figure 7.1.: A hierarchy of algebraic typeclasses, where arrows indicate a stronger typeclass
implying a weaker typeclass.
Dotted arrows correspond to the “non-preferred” typeclass paths which are relevant to
section 7.2.2.

33
class add_monoid (α : Type) :=

(zero : α) (add : α → α → α)

33class add_comm_monoid (α : Type) extends add_monoid α

33
class semiring (α : Type) extends add_comm_monoid α :=

(one : α) (mul : α → α → α)

33
class add_group (α : Type) extends add_monoid α :=

(neg : α → α)

33class add_comm_group (α : Type) extends add_group α, add_comm_monoid α

33class ring (α : Type) extends semiring α, add_comm_group α

Listing 7.2.: The hierarchy in fig. 7.1 described using extends clauses.

7.2. Types of structure inheritance
Lean 3 supports two types of structure inheritance: the default “new style”, which we will refer to
as “nested”, and does not support multiple inheritance; and the legacy “old style” (enabled with
set_option old_structure_cmd true) which we will refer to as “flat”, and does support multiple
inheritance. Lean 4 (as a language) does away with the “flat” mode, but extends the “nested”
mode to support multiple inheritance.

To compare these approaches, this section demonstrates how to build the miniature algebraic
hierarchy shown in fig. 7.1. If we permit ourselves to use the built-in language support for multiple
inheritance, we could write this as in listing 7.2. As they are not going to be relevant to the
discussion in this chapter, the proof fields such as one_mul : ∀ a : α, mul one a = a have all
been omitted.

To avoid this chapter being about a specific implementation of inheritance in a specific version
of Lean, we will avoid the extends keyword, instead emulating it via different possible encodings
of inheritance into regular structures. For simplicity this chapter is largely presented as about
Lean, but the supplemental repository referenced in section 7.7 demonstrates how the Lean 3
samples presented here can be replicated in Coq1 and in Lean 42.

1Albeit somewhat non-idiomatically.
2At least, in old versions without pertinent fixes!

81

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

7.2.1. Flat structures

The “flat” approach to structure inheritance is to copy all of the fields from the base classes into
the derived class. If multiple base classes share a field of the same name, then these fields are
merged3. The forgetful instances are then implemented by unpacking all the relevant fields of the
derived class and passing them to each base class constructor (which in Lean 3 can be written as
{ ..derived }).

This can be seen for the toy example from listing 7.2 in listing 7.3a; ring extends both semiring

and add_comm_group, so inherits the union of the four fields of semiring (zero, add, one, mul)
and the three fields of add_comm_group (zero, add, neg). The ring.to_semiring and ring.to_

add_comm_group instances generate constructor applications that reassemble the corresponding
fields.

This approach is straightforward to implement in a theorem prover, and is the one used (via
set_option old_structure_cmd true) in the majority of mathlib’s algebraic hierarchy in Lean 3.
A downside to this approach is that it can produce more work for unification (leading to poor
performance) in long inheritance chains [45, §10].

7.2.2. Nested structures

A naïve approach to multiple inheritance for ring would be simply to create a structure containing
a to_semiring field and a to_add_comm_group field. The problem with this approach is that the
resulting structure contains two separate add fields. Compatibility of these fields could in principle
be enforced with a proof field along the lines of add_ok : to_semiring.add = to_add_comm_group

.add, but this makes the API very unpleasant to use as the user now has to rewrite between all
the different copies of add.

The way to modify this approach to avoid this pitfall is to add a field for each base class that
doesn’t overlap with any previous base classes, otherwise fall back to the “flat” approach and
add the non-overlapping fields directly. We call these non-overlapping base-classes “preferred”
instances, as the projections for these fields can be registered directly with the typeclass system
using attribute [instance] derived.to_base. What remains are the “non-preferred” instances,
which can be constructed in a similar way to what was done in section 7.2.1, though with
somewhat messier expressions. Note that unlike section 7.2.1, this approach is influenced by the
order of the base classes.

This can be seen in listing 7.3b; ring contains a to_semiring field for its first base class, but
add_comm_group would overlap so its remaining non-overlapping field (neg) is added separately. The
“preferred” ring.to_semiring projection is then registered with the typeclass system, while the
“non-preferred” ring.to_add_comm_group is painstakingly assembled piece-by-piece. To encourage
Lean to avoid the “non-preferred” instance, we give it a low priority of 100 (the default is 1000).

This approach is more complicated to implement (and indeed, was not implemented in Lean

3Unless they are of different types, which raises an error.

82

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

until Lean 4), but can have performance advantages for unification as the “preferred” instance
paths do not introduce a constructor application.

The result of listing 7.3b is that the graph in fig. 7.1 is imbued with an asymmetry; the dotted
edges are provided by “non-preferred” instances. These edges can be chosen on any spanning
tree4 of the overall graph, and indeed can be optimized to fall on the paths most used by the
library [mathlib4#3840].

For the purpose of this chapter, the opposite is true; their placement has been pessimized to
deliberately cause a failure, which we shall see in section 7.3.2!

4In general this is a spanning diamond-free directed acyclic graph, but for this chapter it suffices to consider a
tree.

83

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

33
class add_monoid (α : Type) :=

(zero : α) (add : α → α → α)

33

class add_comm_monoid (α : Type) :=

(zero : α) (add : α → α → α)

instance add_comm_monoid.to_add_monoid (α : Type)

[i : add_comm_monoid α] : add_monoid α := { ..i }

33

class semiring (α : Type) :=

(zero : α) (add : α → α → α)

(one : α) (mul : α → α → α)

instance semiring.to_add_comm_monoid (α : Type)

[i : semiring α] : add_comm_monoid α := { ..i }

33

class add_group (α : Type) :=

(zero : α) (add : α → α → α)

(neg : α → α)

instance add_group.to_add_monoid (α : Type)

[i : add_group α] : add_monoid α := { ..i }

33

class add_comm_group (α : Type) :=

(zero : α) (add : α → α → α) (neg : α → α)

instance add_comm_group.to_add_group (α : Type)

[i : add_comm_group α] : add_group α := { ..i }

instance add_comm_group.to_add_comm_monoid (α : Type)

[i : add_comm_group α] : add_comm_monoid α := { ..i }

33

class ring (α : Type) :=

(zero one : α) (add mul : α → α → α) (neg : α → α)

instance ring.to_semiring (α : Type)

[i : ring α] : semiring α := { ..i }

instance ring.to_add_comm_group (α : Type)

[i : ring α] : add_comm_group α := { ..i }

(a) The flat approach (section 7.2.1), copying base fields to
derived classes.

33
class add_monoid (α : Type) :=

(zero : α) (add : α → α → α)

33

class add_comm_monoid (α : Type) :=

(to_add_monoid : add_monoid α)

attribute [instance] add_comm_monoid.to_add_monoid

33

class semiring (α : Type) :=

(to_add_comm_monoid : add_comm_monoid α)

(one : α) (mul : α → α → α)

attribute [instance] semiring.to_add_comm_monoid

33

class add_group (α : Type) :=

(to_add_monoid : add_monoid α)

(neg : α → α)

attribute [instance] add_group.to_add_monoid

33

class add_comm_group (α : Type) :=

(to_add_group : add_group α)

attribute [instance] add_comm_group.to_add_group

@[priority 100] instance add_comm_group.to_add_comm_monoid

{α : Type} [i : add_comm_group α] : add_comm_monoid α :=

{ to_add_monoid := i.to_add_group.to_add_monoid, ..i }

33

class ring (α : Type) :=

(to_semiring : semiring α)

(neg : α → α)

attribute [instance] ring.to_semiring

@[priority 100] instance ring.to_add_comm_group

(α : Type) [i : ring α] : add_comm_group α :=

{ to_add_group :=

{ to_add_monoid :=

i.to_semiring.to_add_comm_monoid.to_add_monoid, ..i },

.. i }

(b) The nested approach (section 7.2.2), inserting the first
parent as a field and copying the remaining fields.

Listing 7.3.: Two approaches to implementing inheritance, by elaborating the extends clauses in
listing 7.2 as the highlighted lines.

84

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

7.3. Typeclasses depending on typeclasses
In section 7.2, we concerned ourselves with the typical examples of typeclasses which depend
on a single type. In Lean, it is possible for typeclasses to depend not only on multiple types,
but on typeclasses that constrain those types. A simple typeclass of this form is module R M,
which is used to declare that given a semiring R and an abelian monoid M , there is an R-module
structure on M . A more complete explanation of this typeclass can be found in chapter 4 and
[45, §5]. For the purpose of this chapter, we can imagine the simpler definition as follows:

33

class module (R M : Type) [semiring R] [add_comm_monoid M] :=

(smul : R → M → M)

-- (one_smul : ∀ (x : M), smul 1 x = x)

-- (mul_smul : ∀ (r s : R) (x : M), smul (r * s) x = smul r (smul s x))

-- (add_smul : ∀ (r s : R) (x : M), smul (r + s) x = smul r x + smul s x)

-- (zero_smul : ∀ (x : M), smul 0 x = 0)

Here, the proof fields within the typeclass depend on the operators imbued upon the types
R and M . Just as in section 7.2, we shall ignore these proof fields as they are not relevant
to the discussion other than providing motivation for the [semiring R] [add_comm_monoid M]

parameters.

7.3.1. Equality of typeclass arguments

A natural use of this typeclass is to record the fact that any semiring is a module over itself,
where the scalar action smul is just multiplication (as in section 4.2.1). This can be written in
Lean as

33
instance semiring.to_module (R) [iS : semiring R] : module R R :=

{ smul := semiring.mul }

The type of this instance is misleading; while a human reader could be forgiven for assuming that
the type is just module R R, to Lean the type is

33@module R R iS (@semiring.to_add_comm_monoid R iS)

where @ is syntax to tell Lean that even the automatically-populated typeclass arguments should
be spelled out explicitly5. The expressions for these implicit arguments are visualized graphically
in fig. 7.4a

Lean can now tell us that a ring is a module over itself, as after all every ring is also a semiring.
We can ask this question with:

33example (R) [iR : ring R] : module R R := by apply_instance

Once again, the type is misleading; the true type can be seen in fig. 7.4b. Comparing the
types for fig. 7.4a and fig. 7.4b, we see that the former unifies with the latter by setting
iS = @ring.to_semiring R iR; for this reason, Lean finds our instance as @semiring.to_module

5This style of display can be enabled with set_option pp.implicit true in Lean 3 and set_option pp.explicit true

in Lean 4.

85

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

R (@ring.to_semiring R iR).

7.3.2. Inequality of typeclass arguments

Let’s imagine now that we want to write a lemma that applies to a module over a ring (as opposed
to a semi-module over a semiring), and states that (−r)m = −(rm). We write this as6

33
lemma neg_smul {R M} [ring R] [add_comm_group M] [module R M] (r : R) (m : M) :

module.smul (add_group.neg r) m = add_group.neg (module.smul r m) := sorry

To complete our setup, let’s check that this lemma applies to the R-module structure on R:

33

example {R} [iR : ring R] (r : R) (r' : R) :

module.smul (add_group.neg r) r' = add_group.neg (module.smul r r') :=

neg_smul r r'

If we use the “flat” design in listing 7.3a, then this continues to work as expected. The same is
not true of the “nested” design in listing 7.3b, which fails to synthesize type class instance for

33
@module R R (@ring.to_semiring R iR)

(@add_comm_group.to_add_comm_monoid R (@ring.to_add_comm_group R iR))

which is shown graphically in fig. 7.4c. The neg_smul lemma is an example of how typeclass
resolution can be steered through a specific node of the graph in fig. 7.1.

In Lean 3, the reason this fails is nothing to do with typeclass search; the problem is that the
type in fig. 7.4c is not equal to type in fig. 7.4b, due to the implicit add_comm_monoid M arguments
(shown in red) not being considered equal. Considerations of equality between the red paths in
figs. 7.4b and 7.4c are often referred to as a “typeclass diamonds” due to the shape they form
when overlaid; though this is a rather more subtle diamond problem than the ones described in
section 4.5 and [44, §3.1] as it is caused by code that would normally be invisible to the user.

To mathematicians, this diagram obviously commutes; weakening a ring to an abelian monoid
via a semiring is the same as doing so via an abelian group. But Lean doesn’t care about
“obviously”: when determining equality of types, it’s not enough for them to just be provably
the same; they need to be definitionally (sometimes called judgmentally) so. A proof of rfl can
be used to determine if two terms are judgmentally equal; under listing 7.3b, we get an error
confirming they are not:

33

example (R) [iR : ring R] :

(@semiring.to_add_comm_monoid R (@ring.to_semiring R iR)) =

(@add_comm_group.to_add_comm_monoid R (@ring.to_add_comm_group R iR)) :=

rfl -- fails in Lean 3 with listing 7.3b

7.3.3. Impact of the inheritance strategy

The rfl in section 7.3.2 that fails under listing 7.3b but not listing 7.3a tells us that the nested
inheritance is certainly to blame here. The underlying cause is the difference between the

6Omitting the usual - and • notation to keep listing 7.3 short.

86

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

add_monoidadd_group

add_comm_monoidadd_comm_group

semiringring

33

@module R R

iS

(@semiring.to_add_comm_monoid R iS)

(a) Instance to match

add_monoidadd_group

add_comm_monoidadd_comm_group

semiringring

33

@module R R

(@ring.to_semiring R iR)

(@semiring.to_add_comm_monoid R

(@ring.to_semiring R iR))

(b) Matching paths

add_monoidadd_group

add_comm_monoidadd_comm_group

semiringring

33

@module R R

(@ring.to_semiring R iR)

(@add_comm_group.to_add_comm_monoid R

(@ring.to_add_comm_group R iR))

(c) Mismatching paths

Figure 7.4.: Paths taken through the graph in fig. 7.1 when filling the two implicit arguments of
the type of module R R.
Dotted lines again refer to “non-preferred” edges.

“preferred” and “non-preferred” paths.
The “non-preferred” edges in listing 7.3b are implemented directly as a constructor application

via the { } syntax; so by virtue of following “non-preferred” edges, the red path in fig. 7.4c
unfolds to an application of the add_comm_monoid constructor. The “preferred” edges correspond
to a projection; unless applied to something that unifies against a constructor, these operations
themselves do not unify against a constructor. As the red path in fig. 7.4b consists of only
“preferred” edges, it only unifies with this add_comm_monoid constructor if iR unifies with a ring

constructor.
If iR is a concrete instance such as instance int.ring : ring ℤ, then it will almost certainly

unify with a ring constructor, and the overall unification problem is solvable. However, if iR is
a free variable, it will only unify with a constructor in systems which support “η-reduction for
structures”. Lean 3 is not such a system, which makes unification impossible.

7.3.4. Other examples in mathlib

The module typeclass is far from the only typeclass in mathlib that follows the pattern introduced
in section 7.3; some others typeclasses (all of which fall afoul of the issue in section 7.3.2) include

• algebra (R A : Type) [comm_semiring R] [semiring A], indicating that A is an R-algebra.

• star_ring (R : Type) [non_unital_semiring R], indicating that there is a ? operator com-
patible with the existing ring structure on R.

• cstar_ring (R : Type) [non_unital_normed_ring R] [star_ring R], indicating that the
existing norm, ?, and ring structure are suitable to declare R a C?-ring.

Like the module example, the design of the first of these is brought on by a need to work with
two separate carrier types, and the need to avoid “dangerous instances” [45, §5.1].

87

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

The other two can be described as “mixin” typeclasses, and are motivated by a desire to
avoid a combinatorial explosion of typeclass variations: an attempt at star_ring without mixins
could easily end up needing all 16 variations of unital/non-unital commutative/non-commutative
normed? star rings/fields. This motivation is largely a pragmatic one; the introduction of a tool
like Coq’s Hierarchy Builder [54] to mathlib would eliminate the cost of manually authoring such
an explosion of typeclasses.

7.4. Mitigation strategies

7.4.1. Perform η-reduction of structures in the kernel

A key difference between the type theory of Lean 3 and Lean 4 is that Lean 4 adds a kernel
reduction rule that η-reduces structures7, which is precisely what we concluded we needed in
section 7.3.3. The following example demonstrates what this means:

33

structure point := (x y : ℤ)

-- fails in Lean 3, succeeds in Lean 4

example (p : point) : p = { x := p.x, y := p.y } := rfl

In essence, any value from a structure type is considered judgmentally equal to its constructor
applied to its projections.

This feature was motivated by various “convenience” definitional equalities (as requested by
[lean4#777]), such as wanting e.symm.symm = e for an equivalence e : α ≃ β; but in a thankful
coincidence happens to be precisely the tool needed to resolve the trap in section 7.3.2 that Lean 4
dropping support for “flat” structures would otherwise have ensnared us in. In particular, the
Lean 4 version of the failing example ... := rfl above succeeds.

Until 2023-02-22, the structure η-reduction rule was disabled in Lean 4 during typeclass search;
both due to performance concerns, and an absence of any evidence that it was necessary in the
first place. As evidence mounted [lean4#2074], a compromise was reached to unblock the Lean 4
version of mathlib that allowed it to be temporary enabled8 in places where there was no other
choice but taking the performance hit. After some unification performance improvements which
are out of scope for this chapter, this behavior was turned on globally on 2023-05-16 [lean4#2210].

Lean 4 is not the only language to have taken an experimental approach to structural η; Coq
supports it too, under the disabled-by-default Primitive Projections option. In contrast, Agda
enables it by default for inductive types9, but allows it to be disabled via no-eta-equality.

7Strictly speaking, it η-reduces inductive types with one constructor; structures are not native to the type theory
of Lean, and instead just syntax for generating a suitable inductive type.

8Via set_option synthInstance.etaExperiment true.
9Some motivating discussion can be found in [55].

88

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

flat_hack

add_monoidadd_group

add_comm_monoidadd_comm_group

semiringring

(a) A hack to force the behavior of flat inheritance
when only nested inheritance is available.

add_monoidadd_group

add_comm_monoidadd_comm_group

semiringring

(b) A variant of fig. 7.1 formed by swapping the
two black arrows, that prevents the problem in
fig. 7.4c.

Figure 7.5.: Alternate placements of the “preferred” spanning tree, with the diamond discussed
in fig. 7.4 overlaid.

7.4.2. Use “flat” inheritance

The obvious approach to avoiding problems with “nested” inheritance is to simply not use it.
Unfortunately, in the absence of elaborator support for translating a variation of listing 7.2 into
listing 7.3a (such as in Lean 4) this would have to be done by hand, which can be rather tedious
and error-prone.

There is however a trick; since the elaborator can translate listing 7.2 into listing 7.3b, we
can construct a pathological graph such that all the edges we care about are forced to be “non-
preferred”. We do this by adding an empty flat_hack structure as the first base class of every
structure, which ensures that the base classes always overlap (due to the to_flat_hack field), and
so the only “preferred” base class is the unused to_flat_hack projection. The spanning tree of
“preferred” base classes across all such typeclasses is a star with flat_hack at its center, as shown
in fig. 7.5a.

This forces all the typeclass resolution to go through the “non-preferred” paths, which behave
identically to their “flat” counterparts by unfolding to a constructor application.

7.4.3. Carefully select “preferred” paths

In section 7.2.2, we mention that the choice of where to place the spanning tree of “preferred” paths
could be optimized for performance. In light of section 7.3.2, we could instead attempt to optimize
to ensure that the problematic diamonds never arise. Indeed, there are many arrangements of the
“preferred” paths in fig. 7.1 that do not run into the specific example in fig. 7.4c, such as fig. 7.5b.

For our purposes, an adequate rule for why the red arrows of fig. 7.5 commute but the ones
of fig. 7.4 do not is that the paths commute only if their least common ancestor (with respect
to “preferred” edges) are equal10; fig. 7.5a commutes due to the common flat_hack ancestor,
fig. 7.5b commutes due to the common add_comm_monoid ancestor, but the red paths in fig. 7.4 do

10With thanks to Mario Carneiro for this characterization.

89

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

nu_na_semiring

nu_na_ring

nu_semiring

nu_ring

na_semiring

na_ring

semiring

ring

Figure 7.6.: An algebraic hierarchy where a suitable spanning tree placement can ensure all
squares commute
The red paths highlight a square that was falsely claimed to not commute in [3]. na and nu

are abbreviated from mathlib’s non_unital and non_assoc(iative).

not because the least common ancestor in fig. 7.4b is add_comm_monoid while the least common
ancestor in fig. 7.4c is add_monoid.

The version of this chapter published as [3] prematurely concluded from discussion in [56] that
it is not in general possible to choose a spanning tree such that all pairs of paths commute, using
as a counterexample the set of 8 typeclasses arranged in a cube in fig. 7.6, and claiming the red
path did not commute. In fact, the red path does commute, and it can be checked that the other 5
faces also contain commuting paths. It remains an open question whether other counterexamples
exist; though a brute-force search by Mario Carneiro on small graphs (after a graph-theoretical
framing of the problem later in [56]) suggests they do not.

7.4.4. Ban non-root structures in dependent arguments

The problem in section 7.3.2 is caused by a typeclass argument to a typeclass being inferable
both via “preferred” and “non-preferred” routes. In section 7.4.2, this can be worked around by
ensuring every path is maximally “non-preferred”. An alternative is to ensure that every path is
“preferred”, by only accepting typeclass arguments that appear as roots of the spanning subgraph.
This could look like

33

class module (R M : Type)

[has_zero R] [has_add R] [has_one R] [has_mul R]

[has_zero M] [has_add M] :=

(smul : R → M → M)

-- (one_smul : ∀ (x : M), smul 1 x = x)

-- (mul_smul : ∀ (r s : R) (x : M), smul (r * s) x = smul r (smul s x))

-- (add_smul : ∀ (r s : R) (x : M), smul (r + s) x = smul r x + smul s x)

-- (zero_smul : ∀ (x : M), smul 0 x = 0)

where each of the operators for R and M is taken as a separate typeclass argument.
This approach has two main downsides: it results in larger proof terms, because now it has 6

90

https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Some.20observations.20on.20eta.20experiment/near/388607065
https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Some.20observations.20on.20eta.20experiment/near/388607065

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

typeclass arguments instead of four, which have to be resolved all the way down to the smallest
typeclass instead of stopping part-way along the graph; and it doesn’t extend to cases where
not just the data fields carrying the operators on the type arguments, but also the proof fields
carrying their properties, are needed to define the fields of the dependent typeclass.

7.5. Implications for packed structures
Up until this point we have focused only on typeclasses, as these are (at the time of writing) the
idiomatic way to represent algebraic structure in Lean. While Coq also supports typeclasses,
and the previous examples can be faithfully reproduced in it, this is not the idiomatic way to do
things in MathComp.

Instead, Coq’s “Hierarchy builder” [54, §4] generates “packed” structures [57] with a field
for the type itself, rather than consuming the type as a parameter. These structures are then
ineligible for typeclass search, but can be located automatically via “canonical structures” (or as
they are known in Lean, “unification hints”) instead. These can in fact be built on top of the
typeclasses from section 7.2.1 or section 7.2.2:

33
structure packed_semiring := (carrier : Type) [semiring carrier]

structure packed_add_comm_monoid := (carrier : Type) [add_comm_monoid carrier]

A naïve encoding of a module in this packed view would be:

33
structure packed_module :=

(R : packed_semiring) (M : packed_add_comm_monoid) [module R.carrier M.carrier]

As packed_module has no parameters and is therefore not dependently-typed, it cannot fall afoul
of the problem in section 7.3.2.

Unfortunately, this encoding is effectively useless mathematically [58, §3]; we have no way
to talk about two modules over the same ring without something involving equality of types
and operators11 like (V W : packed_module) (hVW : V.R = W.R); a much worse version of the
duplicate add fields described at the start of section 7.2.2.

A more reasonable representation that avoids this problem is to only partially pack the structure,
as

33
structure packed_module (R : packed_semiring) :=

(M : packed_add_comm_monoid M) [module R.carrier M.carrier]

which allows (V W : packed_module R). This is roughly analogous to the approach taken in Coq’s
MathComp [59] and in mathlib’s category theory library.

While this representation avoids the specific problem in section 7.3.2 due to its type not
depending on the add_comm_monoid path (the red arrows in fig. 7.4), it is nonetheless dependently-
typed. This make it vulnerable to an analogous problem where the diamond is instead formed by

11Or alternatively, by packing the ring and both modules into a single structure, as (VW : packed_module₂) (v :

VW.1) (w : VW.2). This is a viable approach for a module over two rings (as rarely are many rings needed), but
doesn’t scale for n modules over the same ring.

91

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

the semiring path (the blue arrows in fig. 7.4) after adding two new comm_semiring and comm_ring

nodes.
Fortunately for MathComp, the “Hierarchy builder” uses flat packed structures12, and so avoids

these issues for the same reason that flat typeclasses do in section 7.3.1.

7.6. Related work
While this work is of course directly related to the work of porting Lean 3’s mathlib to Lean 4, the
lessons here are transferable to Coq (where [54] seemingly correctly chose to use flat structures by
coincidence) and Agda (which has adopted structure η-reduction globally due to other motivations
[55]); even if only to provide further understanding of why the respective choices that have already
been made in those systems are the correct ones. To the author’s awareness, no previously
demonstrated algebraic motivations have been given for η-reduction in the kernel. Some in-depth
analysis of “coherence” in algebraic typeclass paths is provided by [60, definition 3.3] (another
name for our comparison in fig. 7.4), but it does not provide an example to show why η-reduction
specifically should be assumed.

The analysis in sections 7.3 and 7.4 is only relevant to systems that use dependent type theory,
as concerns of equalities between the values of type parameters cannot arise in a language that
does not permit those parameters in the first place. The Isabelle proof assistant which uses simple
type theory is therefore immune to this class of problem; and at any rate [61, §5.4] advocates
avoiding its record types entirely for algebraic structure, in favor of using locales.

Algebraic hierarchies certainly do not only exist in proof assistants; they are an essential part
of computer algebra systems too. However, most computer algebra systems do not make use of
dependent types [62, §1], with a notable exception being the Axiom Library Compiler, Aldor.
Despite supporting dependent types, the type system of Aldor is too restrictive for sections 7.3
and 7.4 to be relevant. Aldor does not implement definitional equality of types (referred to as
“value-equality” by [62, §2.4]), and so falls at a much earlier hurdle than the one in section 7.3; it
does not consider Vector(2+3) and Vector(5) to be the same type [62, §2.3], meaning that even
fig. 7.4b would be considered a mismatch, and every square in fig. 7.6 would not commute.

This work focuses on how a seemingly innocuous implementation detail can be crucial to
ensuring the success of existing approaches to algebraic hierarchies in dependently-typed proof
assistants. The broader analysis of these hierarchies, and possible alternative designs (for which
computer algebra systems can provide inspiration), is left to [45; 54; 58; 53].

12Presumably due to simplicity of implementation; there is no mention in [54] that using nested inheritance instead
would have run into the issues described here.

92

Chapter 7. Multiple-inheritance hazards in dependently-typed algebraic hierarchies

7.7. Summary
In this chapter we have shown that for the “nested” approach to multiple inheritance to be viable
in the context of dependently-typed typeclasses or packed structures, either we have to severely
restrict how such inheritance is used (sections 7.4.2 to 7.4.4), or the kernel of the theorem prover
must implement η-reduction for structures (section 7.4.1).

This scenario was a major stumbling block for mathlib’s transition from Lean 3 to Lean 4,
as typeclasses of this form are used extensively in linear algebra. This chapter provides a clear
explanation of exactly what was going wrong, and a selection of various solutions that were
considered before ultimately settling on the kernel change.

The code examples throughout this chapter, along with translations into Lean 4 and Coq, and
the version information needed to run them, can be found at https://github.com/eric-wieser/

lean-multiple-inheritance.

93

https://github.com/eric-wieser/lean-multiple-inheritance
https://github.com/eric-wieser/lean-multiple-inheritance

Part III.

Formalizations

94

8
Universal properties as a computational tool

The purpose of computing is insight, not numbers.

(Richard Hamming)

This chapter is adapted from “Computing with the Universal Properties of the
Clifford Algebra and the Even Subalgebra” [13], which in turn is an extended
version of [4].

One of the core claims of geometric algebra is that it lets you perform geometric manipulation in
a “coordinate-free” way. Exactly what this means typically depends on the author, but a common
interpretation is “the choice of basis vectors does not affect the result of the manipulation”[63].
For clarity, algorithms with this property will be referred to as “basis-agnostic”.

Let us quickly summarize some examples of operations which are and are not “basis-agnostic”.
Basic algebraic operations like multiplication and the wedge product have a precise geometric
meaning with no mention of coordinates, so are “basis-agnostic”. However, the pseudoscalar
I =

∏
i ei is not basis-agnostic; choosing the basis vectors in a different order results in a change

of sign. In 3D this basis-dependence is transferred to the cross product, which in GA can be
expressed as a× b = −I(a ∧ b); the handedness of the cross-product depends on the handedness
of the vector space, which is determined by the basis.

There are some operations which despite being “basis-agnostic”, are still typically defined
by first making a choice of basis. This works well computationally, but can obscure insight
mathematically. In particular, operations defined in terms of coordinates on a multivector basis
can be difficult to rigorously show to be “coordinate-free”—that is, invariant with respect to the
choice of basis—especially in large algebras.

This chapter explores the use of the “universal property” to ensure that operations on the
Clifford algebra1 are “coordinate-free” by construction. To build some insight for applying the
universal property, this chapter will draw parallels to the process of writing recursive programs.

1In this chapter, we will use “Clifford algebra” to refer to the algebraic object, and “geometric algebra” to refer
to the field of study.

95

Chapter 8. Universal properties as a computational tool

After introducing some intuition for recursion in section 8.1, this chapter shows how the
“universal property” can be used as a computational tool in the place of choosing a basis, and in
section 8.2.1 demonstrates how to view this tool as a variant of recursion. Section 8.3 derives a
new universal property for the even subalgebra from our first universal property, and uses this in
sections 8.3.1 and 8.3.2 to construct two well-known isomorphism in an unusual way. Section 8.4
shows how this recursive technique can be applied to construct the left-contraction from one of
its properties alone. While this chapter contains no Lean code, Lean versions of the results are
provided throughout this chapter via “�” links, which lead to the snapshot repository submitted
with [13].

8.1. Recursors
In functional programming, a list is usually defined inductively; either it is empty, “[]”, or it is
an element a followed by another list l, “a :: l”. This inductive definition provides a recursion
principle, or recursor: “To define a function from a list of elements, it suffices to define its value
on [], and define its value on a :: l given its value on l”. Consider computing in this way a sum of
a list of elements of a ring R. In a functional programming language, we would usually do so as:�

sum : listR→ R (8.1)

sum([]) := 0 (8.1a)

sum(a :: l) := a+ sum(l) (8.1b)

One way to describe the list recursor is as a “fold”; if we have a function f : α → β → β,
then fold[f] : listα → β → β. This satisfies fold[f]([], b0) = b0 and fold[f](a :: l, b0) =

f(a, fold[f](l, b0)). The “pattern matching” in eq. (8.1) can be trivially transformed by the
compiler into an application of fold[f], as sum(l) = fold[a 7→ v 7→ a + v](l, 0), where sum(l) in
eq. (8.1b) has been replaced with v.

Sometimes implementing a recursion scheme requires keeping track of intermediate state. As
an example, consider producing an accumulated sum of the elements of a list, starting from
zero, such that accum([a, b]) = [0, a, a+ b]. To implement this, we use the recursor to define an
auxiliary helper function:�

accum_from : listR→ R→ listR (8.2)

accum_from([]) := a 7→ [a] (8.2a)

accum_from(b :: l) := a 7→ a :: accum_from(l)(a+ b) (8.2b)

Note the unusual type signature in eq. (8.2); for each list, it produces not a value but another
function. It is this function that consumes our intermediate state a : R, which is the value to
resume the accumulation from; allowing us to thread this value through the recursion while still

96

https://github.com/pygae/lean-ga/blob/5a4d578666cdff64bce0ce12c0316986187597e0/src/examples/recursors.lean#L29?decl=icacga.sum
https://github.com/pygae/lean-ga/blob/5a4d578666cdff64bce0ce12c0316986187597e0/src/examples/recursors.lean#L35?decl=icacga.accum_from

Chapter 8. Universal properties as a computational tool

sticking to the rules of our list recursor. We can recover our desired function by simply initializing
this state:�

accum : listR→ listR (8.3)

accum := l 7→ accum_from(l)(0) (8.3a)

Finally, let us consider the example where the running sum should be in reverse. As we recurse,
we will keep track of what the first element of our list is. Instead of introducing this intermediate
state into the input as we did in eq. (8.2) by producing a function, we introduce it into the output
by producing a pair (×):�

rev_accumaux : listR→ (R× listR) (8.4)

rev_accumaux([]) := (0, []) (8.4a)

rev_accumaux(a :: l) := (a+ b, b :: l′) where (b, l′) := rev_accumaux(l) (8.4b)

Instead of initializing the state as in eq. (8.3a), we post-process it:�

rev_accum : listR→ listR (8.5)

rev_accum := l 7→ a :: l′ where (a, l′) := rev_accumaux(l) (8.5a)

In this section, we have seen two important tricks for taking a simple recursor and implementing
more complex recursion schemes. In the rest of this chapter, we will show how these principles
translate to the language of universal properties.

8.2. The universal property of the Clifford Algebra
To state the universal property of the Clifford algebra [64, §14.4; 65, p. II.1.1], we will need the
terminology of R-modules and R-algebras from abstract algebra, as introduced in section 2.2.1.
We say an “R-algebra morphism” is an R-linear map that additionally preserves multiplication
and 1, the multiplicative identity. Armed with these definitions, we can state� the universal
property,

Theorem 8.1 (Universal property of the Clifford algebra). For every R-algebra A and R-module
V , and a quadratic form Q : V → R, we have a one-to-one correspondence between:

linear maps f : V → A

satisfying f(v)2 = Q(v)
and

algebra morphisms
F : G(V,Q)→ A.

This correspondence is compositional; given another R-algebra A2 and an algebra morphism
H : A→ A2, if f corresponds with F then v 7→ H(f(v)) corresponds with x 7→ H(F (x)). We
write this correspondence as lift[f] = F .

It can be helpful to present this graphically, as is done in fig. 8.1.

97

https://github.com/pygae/lean-ga/blob/5a4d578666cdff64bce0ce12c0316986187597e0/src/examples/recursors.lean#L39?decl=icacga.accum
https://github.com/pygae/lean-ga/blob/5a4d578666cdff64bce0ce12c0316986187597e0/src/examples/recursors.lean#L44?decl=icacga.rev_accum_aux
https://github.com/pygae/lean-ga/blob/5a4d578666cdff64bce0ce12c0316986187597e0/src/examples/recursors.lean#L48?decl=icacga.rev_accum
https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/basic.lean#L105?decl=clifford_algebra.lift

Chapter 8. Universal properties as a computational tool

G(V,Q) A

V

F

f
ι

lift

(a) via the map ι

G(V,Q) A A2

V

F H

f H◦f

H◦F

lift

lift

(b) via the property lift[H ◦ f] = H ◦ lift[f]

Figure 8.1.: Graphical representation of two equivalent ways to define the universal property,
where (b) corresponds to theorem 8.1.
Setting F = (x 7→ x) in (b) recovers (a). In this chapter we will mostly elide ι, leaving it
implicit wherever we turn an element of V into an element of G(V,Q).

Proof. The details depend on the construction of G(V,Q); if defined as a quotient of the tensor
algebra T (V) such as in [65], then it follows from the universal property of T (V); if constructed
from a basis on V , then lift[f] can be defined trivially (as we briefly elaborate on in eq. (8.10)); if
“defined”2 via category theory as in [64, §14.4], then theorem 8.1 is true by definition.

To give a concrete example of the behavior of F = lift[f], for u, v, w : V we have F (1 + 2uv +

3w) = 1 + 2F (u)F (v) + 3F (w) = 1 + 2f(u)f(v) + 3f(w), where the first equality follows from
properties of algebra morphisms, and the second follows from reading off F (ι(v)) = f(v) from
fig. 8.1a.

As this chapter is about computation, we will not just use the fact that a suitable lift[f] is
known to exist, but will also assume that the construction of G(V,Q) provides a lift[f] with
computational content (i.e. an algorithm for converting between f and F), just as we assumed
that the recursor for lists did in section 8.1. This will permit us to define further computations in
terms of lift[f].

8.2.1. Universal properties as recursors

In eq. (8.2), we saw a trick to thread extra state through our recursor by choosing our output
to itself be a function. We can play a similar trick with the universal property, although we
are forced to work within the functions that form an algebra. These include the endomorphism
algebra EndR(W) (the R-linear maps of the form W →W); where 1 : EndR(W) is the identity
map and × : EndR(W) → EndR(W) → EndR(W) is composition. The scalars of this algebra
happen to also be the “scaler”s; that is, the canonical map R→ EndR(W) is chosen such that
the image of r : R is the endomorphism corresponding to a uniform scaling by r.

This specialization to A = EndR(W) allows us to apply the universal property to produce a
“fold” operation (so named due to its analogy to the list version described just below eq. (8.1))
by an R-bilinear map f : V →W →W to obtain an algebra morphism into the endomorphism

2Strictly speaking, the categorical approach only “describes” Clifford algebras, stopping short of demonstrating
that objects satifying the description exist.

98

Chapter 8. Universal properties as a computational tool

algebra� ([mathlib#14619]):

fold[f] : G(V,Q)→
EndR(W)︷ ︸︸ ︷
W →W (8.6)

fold[f](v : V) := w 7→ f(v, w) (8.6a)

where the f(v)2 = (w 7→ f(v, f(v, w))) = Q(v) condition can be rewritten as

f(v, f(v, w)) = Q(v)w (8.7)

Similarly, the fact this is an algebra morphism tells us that fold[f](r, v) = rv for r : R and
fold[f](xy, v) = fold[f](x, fold[f](y, v)). As an example of what “fold”ing means in the context of
a Clifford algebra, if c+ u+ vw : G(V,Q) and x : W then

fold[f](c+ u+ vw, x) = cx+ f(u, x) + f(v, f(w, x)). (8.8)

8.2.2. Universal properties as a universal interface

If two different representations of a Clifford algebra are available, G1 and G2, then the universal
property of G1 provides a map between the two:

convert : G1(V,Q)→ G2(V,Q) (8.9)

convert(v : V) := v (= ι2(v)) (8.9a)

In the language of software; if two libraries implement the universal property “API”, then
they can interoperate without direct knowledge of each other. For instance, a library LC that
implements its multivectors as a series of coefficients ai in a chosen basis ei, such as storing
AC = a + a1e1 + a2e2 + a12e12 as [a, a1, a2, a12], can implement the forward direction of the
universal property as

liftLC
[f](AC) = a+ a1f(e1) + a2f(e2) + a12f(e1)f(e2) (8.10)

Similarly, if another library LX with some other representation also provides an implementation of
the universal property, then we can use it to convert a multivector AX from LX into a multivector
AC in LC as

AC = liftLX
[(a1e1 + a2e2) 7→ [0, a1, a2, 0]](AX) (8.11)

Note this still requires the two libraries to agree upon a representation of the vector space (here,
a1e1 + a2e2).

This construction is a computational interpretation of a result from category theory, that

99

https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/fold.lean#L87?decl=clifford_algebra.foldl

Chapter 8. Universal properties as a computational tool

G(V,Q) is functorial� over V . As a functor, this takes a linear map (or isomorphism) f : V →W

that preserves the quadratic form as QW (f(v)) = QV (v) and extends it� to an algebra map (or
isomorphism) F : G(V,QV) → G(W,QW) by taking F (ι(v)) = ι(f(v)). This operation is very
similar to the “outermorphism” [1, §4.2] which it itself a functor� which produces instead a
morphism in the exterior algebra, F :

∧
(V)→

∧
(W).

8.2.3. Elementary GA operations via the universal property

For one of the simplest examples of applying the universal property, consider using f : V →
G(V,Q) = (v 7→ −v), which trivially satisfies f(v)2 = (−v)2 = v2 = Q(v); the resulting lift[f] is
the familiar “grade involution” operator� x 7→ x̂. A key insight is that we can write this in the
style of eq. (8.1) as:

grade_invol : G(V,Q)→ G(V,Q) (8.12)

grade_invol(v : V) := −v (8.12a)

Note that unlike in eq. (8.1), we are additionally obliged to show that eq. (8.12a) is linear, and
that (−v)2 = v2 = Q(v).

A more complex example involves constructing the grade reversal operation� x 7→ x̃, which
for example sends e1e2e3 to e3e2e1. For this case, we need a different choice of A than G(V,Q).
What we choose is G(V,Q)op, where Aop is the algebra A but with multiplication reversed. This
comes with two obvious R-linear maps, op : A→ Aop and op-1 : Aop → A, which convert between
the two spaces. Note that op(ab) = (op b)(op a), so these are not algebra morphisms; but we do
still have op 1 = 1. Using the notation of eq. (8.12), we implement this in the style of eq. (8.4) as:

grade_revaux : G(V,Q)→ G(V,Q)op (8.13)

grade_revaux(v : V) := op v (8.13a)

Again, we must show that eq. (8.13a) is linear, and that (op v)2 = op(v2) = op(Q(v)) = Q(v). To
recover the reversion operator (a linear map that reverses multiplication), we simply compose
this with op−1 to eliminate the op.

grade_rev : G(V,Q)→ G(V,Q) (8.14)

grade_rev := x 7→ op−1(grade_revaux(x)) (8.14a)

While these applications of the universal property let us implement computations, the universal
property can also be used to assemble proofs. One of the most direct ways to do so is to use
the fact that universal properties provide an equivalence, and to pull an equality across this
equivalence. In the context of theorem 8.1, this allows us to prove that two algebra morphisms

100

https://github.com/pygae/lean-ga/blob/5a4d578666cdff64bce0ce12c0316986187597e0/src/geometric_algebra/from_mathlib/category_theory.lean#L85?decl=CliffordAlgebra
https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/basic.lean#L237?decl=clifford_algebra.map
https://github.com/pygae/lean-ga/blob/5a4d578666cdff64bce0ce12c0316986187597e0/src/geometric_algebra/from_mathlib/category_theory.lean#L96?decl=ExteriorAlgebra
https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/conjugation.lean#L45?decl=clifford_algebra.involute
https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/conjugation.lean#L72?decl=clifford_algebra.reverse

Chapter 8. Universal properties as a computational tool

are equal by passing both through the injective lift[·] operation, which amounts to theorem 8.2.

Theorem 8.2. To show that two algebra morphisms f, g : G(V,Q)→ A are equal, it suffices to
show they agree on the generators v : V : that f ◦ ι = g ◦ ι.

In general, this strategy can be used to construct extensionality theorems from most universal
properties.

A more complex example is the induction principle� in theorem 8.3.

Theorem 8.3. To show a property P (x) for all elements of the Clifford algebra G(V,Q), it
suffices to show:

• That P (r) holds on all scalars r : R

• That P (u) holds on all vectors u : V

• That P (x+ y) holds on all multivectors x, y : G(V,Q) if P (x) and P (y) hold

• That P (xy) holds on all multivectors x, y : G(V,Q) if P (x) and P (y) hold

The proof requires some careful bookkeeping, which is best left to the Lean version in section 9.3.4.

8.3. The universal property of the even subalgebra
The even subalgebra G+(V,Q) of a Clifford algebra G(V,Q) is the subalgebra consisting of the
closure under addition and multiplication of all elements of the form vw where v, w : V �; its
members are known [14, (1.29)] as the “even” multivectors3. We will now show that this subalgebra
has its own universal property�, theorem 8.4:

Theorem 8.4 (Universal property of the even subalgebra). For every R-algebra A and R-module
V , we have a one-to-one correspondence between:
R-bilinear maps f : V → V → A satisfying:

f(v, v) = Q(v) (8.15)

f(u, v)f(v, w) = Q(v)f(u,w) (8.16)

and
algebra morphisms

out of the even subalgebra
F : G+(V)→ A.

This correspondence is compositional; if f corresponds with F then v 7→ w 7→ H(f(v, w))

corresponds with x 7→ H(F (x)). We write this correspondence as lift+[f] = F .

Again, it can be helpful to present this graphically, as is done in fig. 8.2.
We are not just going to prove that there is a correspondence (as [66, Theorem 3.3] does for

the less general case of a non-degenerate quadratic form over a field), but will provide an explicit
basis-agnostic computation of that correspondence in terms of lift[f] from theorem 8.1 (for we
assume an algorithm is provided).

We will start by showing the reverse direction, which given the algebra morphism F :

3Although the definition in [14] needs the construction in section 8.4 and therefore doesn’t work in characteristic
2.

101

https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/basic.lean#L174?decl=clifford_algebra.induction
https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/even.lean#L51?decl=clifford_algebra.even
https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/even.lean#L234?decl=clifford_algebra.even.lift

Chapter 8. Universal properties as a computational tool

G+(V,Q) A

V ⊗ V

F

fι+
lift+

(a) via the inclusion ι+

G+(V,Q) A A2

V ⊗ V

F H

f H◦f

H◦F

lift+
lift+

(b) via the property lift+[H ◦ f] = H ◦ lift[f]

Figure 8.2.: The universal property of the even subalgebra
So as to resemble fig. 8.1, we show the bilinear map f : V → V → A as the equivalent linear
map from the tensor product, f : V ⊗ V → A. Here, ι+(v ⊗ w) = ι(v)ι(w) = vw.

G+(V,Q)→ A we choose as

lift+ -1[F] = f = (v 7→ w 7→ F (vw)) (8.17)

which trivially satisfies theorem 8.4:

f(v, v) = F (vv) = F (Q(v)) = Q(v) (8.18)

f(u, v)f(v, w) = F (uv)F (vw) = F (uvvw) = F (uQ(v)w) = Q(v)F (uw) (8.19)

= Q(v)f(u,w) (8.20)

To construct the forwards direction, we are going to use the same trick as we did in eq. (8.6),
setting W = A ⊕ S to produce an auxiliary function lift+aux[f] : G(V,Q) → (A ⊕ S) → (A ⊕ S).
Here, A is our target algebra, while S is some additional state which mirrors the extra recursor
state we saw in eq. (8.4). A⊕ S is their direct sum, which is to say it consists of pairs (a, s) with
(a1, s1)+ (a2, s2) = (a1 + a2, s1 + s2) and r(a, s) = (ra, rs). Note that for this to be an R-module
as required by theorem 8.4, we need S to also be an R-module. We will deduce precisely what to
choose for S shortly.

We want our fold to apply f on pairs of vectors v, w : V at a time; that is,

lift+aux[f](vwx, (a, s)) = (f(v, w) lift+aux[f](x, (a, s)), s
′). (8.21)

Using the fact that lift+aux[f] will be an algebra morphism, this simplifies to

lift+aux[f](v, lift+aux[f](w, (a, s))) = (f(v, w)a, s′); (8.22)

that is, each application of lift+aux[f] needs to apply “half” of f . An obvious choice would be
to pick S = V → A, the space of R-linear maps which includes the “half”-applied maps like
v 7→ f(v, w)a. Note that this is essentially using the trick in eq. (8.2) for a second time, but
instead of producing an unconstrained function we are required to produce a linear map. We can

102

Chapter 8. Universal properties as a computational tool

then define�

lift+aux[f] : G(V,Q)→ (A⊕ S)→ (A⊕ S) (8.23)

lift+aux[f](v : V) := (a, s) 7→ (s(v), w 7→ f(w, v)a), (8.23a)

where the second component of the pair contains a partially-applied version of f , while the first
component finishes off the invocation from the previous iteration. Note that we cannot take the
product of s(·) and a in a single step as then this operation would cease to be linear; which is
why we instead weave these terms back and forth between the left and right halves of the pair.

We now verify that our lift+aux[f] satisfies the required property in eq. (8.7) as�

lift+aux[f](v, lift+aux[f](v, (a, s))) = lift+aux[f](v, (s(v), w 7→ f(w, v)a)) (8.24)

= (f(v, v)a,w 7→ f(w, v)s(v))) (8.25)
?
= (Q(v)a,w 7→ Q(v)s(w)) (8.26)

= Q(v)(a, s), (8.27)

where ?
= is the equality to be checked. f(v, v) = Q(v) was theorem 8.4, so we can easily

match up the first half of the pair. However, matching up the second half of the pair requires
f(w, v)s(v) = Q(v)s(w), which is a stronger requirement than theorem 8.4 and not true for all
linear maps s : S.

To solve this problem, we need to pick a smaller space S�, the module spanned by linear maps
s : V → A of the form s = (v 7→ f(v, w)a) for all w : V and a : A. Our definition of lift+aux in
eq. (8.23a) trivially adapts to this definition, as w 7→ f(w, v)a lies in the new S by definition. We
are now in a position to solve f(w, v)s(v) = Q(v)s(w), as we can write s = (w 7→

∑
i f(w, ui)ai)

(for some arbitrary finite set of ui : V and ai : A) to get:

f(w, v) (
∑

if(v, ui)ai) =
∑

if(w, v)f(v, ui)ai (8.28)

=
∑

iQ(v)f(w, ui)ai (8.29)

= Q(v)
∑

if(w, ui)ai (8.30)

= Q(v)s(w) (8.31)

where we go from eq. (8.28) to eq. (8.29) using theorem 8.4.
We can now extract lift+[f] as

lift+[f] : G+(V,Q)→ A (8.32)

lift+[f] := x+ 7→ a where (a, s′) = lift+aux[f](x, (1, v 7→ 0)) (8.32a)

This is obviously linear, as it is the composition of operations each of which is linear. We can
show that lift+[f](r) = r by using properties of eq. (8.6). To complete the proof that this is an

103

https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/even.lean#L132?decl=_private.f_fold
https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/even.lean#L162?decl=_private.f_fold_f_fold
https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/even.lean#L125?decl=_private.S

Chapter 8. Universal properties as a computational tool

algebra morphism, we must show that within the even subalgebra it preserves multiplication. We
will do this by induction, for which we need theorem 8.5�.

Theorem 8.5. To show a property P (x) for all elements of the even subalgebra G+(V,Q), it
suffices to show:

• That P (r) holds on all scalars r : R

• That P (x+ y) holds on all elements x, y : G+(V,Q) if P (x) and P (y) hold

• That P (uvx) holds on all elements u, v : V and x : G+(V,Q) if P (x) holds

Proof. Follows by noting that G+(V,Q) is the vector space spanned by all products of even
numbers of vectors in V , that such products can be decomposed into pairs, and through an
appropriate induction principle for spans of vectors.

We apply this principle with P (x) as ∀y, lift+[f](xy) = lift+[f](x) lift+[f](y). The first two
conditions follow trivially by lift+[f](r) = r and linearity. The third condition can be shown as

lift+[f](vwy) = a where (a, s′) = lift+aux[f](vwy, (1, v 7→ 0)) (8.33)

= f(v, w)a where (a, s′) = lift+aux[f](y, (1, v 7→ 0)) (8.34)

= f(v, w) lift+[f](vwy) (8.35)

= lift+[f](vw) lift+[f](y) (8.36)

We now have lift+[f] : G+(V,Q)→ A, the forward direction of the universal property. Combined
with our result in eq. (8.17), all that remains is to show that these two directions are inverses.
Showing that this operation is a left-inverse (lift+ -1[lift+[f]] = f) is straightforward. Showing
that it is a right-inverse requires the extensionality principle in theorem 8.6, which we use in
eq. (8.38).

lift+[lift+ -1[F]](vw) = lift+[F](v, w) = F (vw) (8.37)

=⇒ lift+[lift+ -1[F]] = F (8.38)

Theorem 8.6. To show that two algebra morphisms from the even subalgebra f, g : G+(V,Q)→
A are equal, it suffices to show they agree on the products of two generators v, w : V .�

Proof. Rephrase as ∀x, f(x) = g(x), apply theorem 8.5, and use the properties of algebra
homomorphisms.

8.3.1. The isomorphism with the even subalgebra

A well known R-algebra isomorphism in geometric algebra [67, corollary 15.35] is that between
G+(Rp,q+1,r) and G(Rp,q,r), often introduced in connection with the complex numbers as G(R0,1) ∼=

104

https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/grading.lean#L188?decl=clifford_algebra.even_induction
https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/even.lean#L102?decl=clifford_algebra.even.alg_hom_ext

Chapter 8. Universal properties as a computational tool

C ∼= G+(R0,2) or in connection with the quaternions as G(R0,2) ∼= H ∼= G+(R0,3). We will now
construct the general basis-free version of this result.

Theorem 8.7. G(V,Q) is isomorphic as an R-algebra to G+(V ⊕R,Q′), where Q′((v, r)) :=

Q(v)− r2.�

Here V ⊕R combines V (as elements of the form (v, 0)) with an extra basis vector e = (0, 1)

that squares to −1, and so we will write (v, r) as v + re. In [68, Chapter 1, Theorem 3.7], this
isomorphism is evaluated by choosing a basis for V , and then copying coefficients by inspection:
in the forward direction, each basis vector ei is replaced with eei; and in the backwards direction4,
where all basis vectors appear in pairs, eiej is left alone and eie is mapped back to ei. We will
proceed without choosing a basis for V , and use our pair of universal properties instead.

Proof. To construct the forward map, we can directly write down the coefficient copying approach
by applying theorem 8.1 with f = (v 7→ ev), which satisfies f(v)2 = (ev)(ev) = (−ve)(ev) =

−v(−1)v = Q(v). This gives us F : G(V,Q)→ G+(V,Q′) = lift[f], and is exactly the approach
used in [68, Chapter 1, Theorem 3.7]. This reference does not give an explicit construction for
the reverse mapping, noting that to verify one exists we must “check [F] on a linear basis”.

The reverse map f−1 needs to satisfy the pair of rules above:

f−1(0 + e, 0 + e) = −1 (as e2 = −1 in G+(V,Q′)) (8.39)

f−1(0 + e, v + 0e) = v (remove e from pairs of the form ev) (8.40)

f−1(u+ 0e, 0 + e) = −u (rewrite ue = −eu and do the above) (8.41)

f−1(u+ 0e, v + 0e) = uv (leave blades without e untouched) (8.42)

=⇒ f−1(u+ re, v + se) = (u+ r)(v − s) (8.43)

where eq. (8.43) follows by linearity. Theorem 8.4 holds as f−1(v + se, v + se) = v2 − s2 =

Q′(v+ se) and theorem 8.4 follows similarly. We can thus apply theorem 8.4 with this f to obtain
F = lift+[f−1]; or in our functional notation:

F−1 : G+(V,Q′)→ G(V,Q) (8.44)

F−1((u+ re)(v + se)) := f−1(u+ re, v + se) = (u+ r)(v − s) (8.44a)

All that remains to conclude our construction of this isomorphism is to show that these
operations are inverses, that is for all x : G(V,Q) and x+ : G+(V,Q),

F−1(F (x)) = x, F (F−1(x+)) = x+. (8.45)

4For which [68] proves only existence.

105

https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/even_equiv.lean#L191?decl=clifford_algebra.equiv_even

Chapter 8. Universal properties as a computational tool

Rewriting eq. (8.45) as equalities of functions gives

(x 7→ F−1(F (x))) = (x 7→ x), (x+ 7→ F (F−1(x+)) = (x+ 7→ x+), (8.46)

which allows us to apply theorems 8.2 and 8.6 to solve these equations:

F−1(F (v))

= F−1(f(v))

= F−1(ev)

= f−1(e, v)

= (0 + 1)(v + 0)

= v

F (F−1((u+ re)(v + se)))

= F (f−1(u+ re, v + se))

= F ((u+ r)(v − s))

= (f(u) + r)(f(v)− s)

= euev + rev − seu− rs

= uv + rev − seu+ rse2

= (u+ re)(v + se)

(8.47)

8.3.2. The isomorphism between even subalgebras of negated quadratic
forms

Sometimes, the isomorphism in section 8.3.1 is instead stated with p and q exchanged [67,
corollary 15.35] as G+(Rp+1,q,r) ∼= G(Rq,p,r), as this gives G(R0,2) ∼= H ∼= G+(R3) where the
right side is more obviously SO(3). Rather than repeat the construction in section 8.3.2, we can
instead show that in general G+(Rp,q,r) ∼= G+(Rq,p,r), from which the desired result follows by
composition.

To construct this, we shall once again proceed in a basis-free manner to demonstrate another
application of theorem 8.4.

Theorem 8.8. G+(V,Q) is isomorphic as an R-algebra to G+(V,−Q), where (−Q)(v) :=

−Q(v).�

Proof. We begin by defining the bilinear map fQ : V → V → G+(V,−Q) as f(u, v) = −uv, which
trivially satisfies theorem 8.4:

fQ(v, v) = −Q(v) = (−Q)(v) (8.48)

fQ(u, v)fQ(v, w) = (−uv)(−vw) = uQ(v)w (8.49)

= (−Q(v))(−uw) = (−Q)(v)fQ(u,w). (8.50)

This therefore gives us the map lift+[fQ] : G+(V,Q) → G+(V,−Q) as the forward direction of
our isomorphism; and lift+[f−Q] : G

+(V,−Q)→ G+(V,Q) as the reverse direction.
By symmetry we only need to check that lift+[fQ] ◦ lift+[f−Q] = (x 7→ x) to conclude that this

106

https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/even_equiv.lean#L243?decl=clifford_algebra.even_equiv_even_neg

Chapter 8. Universal properties as a computational tool

is an isomorphism. Noting that

lift+[fQ](lift+[f−Q](uv)) = lift+[fQ](−uv) = −(−uv) = uv, (8.51)

we conclude the desired result via theorem 8.6.

8.4. The isomorphism to the exterior algebra
A key result in geometric algebra is that the Clifford algebra is isomorphic as an R-module to
the exterior algebra over the same vector space, as this provides the non-metric wedge product;
or stated another way, G(V,Q) ∼= G(V, 0). In this section, we shall show how to construct this
isomorphism using the universal property (as is done implicitly in [69, eq. 22]).

In [70, Theorem 34], this is shown in the more general case G(V,Q1) ∼= G(V,Q2), by defining5

vcf : T (V)→ T (V) and αf : T (V)→ T (V) for some bilinear form f : V → V → R, characterized
by [70, Theorems 6 and 21] on u : V and U : T (V) as

v cf (u⊗ U) = f(v, u)U − u⊗ (v cf U), (8.52)

αf (u⊗ U) = u⊗ αf (U)− ucf (αf (U)). (8.53)

Note that in [70] these are defined on the tensor algebra; only later is it proved that under suitable
assumptions on f , these mappings can be transferred to a Clifford algebra where the ⊗ is simply
multiplication6. Overloading the notation from eqs. (8.52) and (8.53), this transferral provides
the mappings v cf : G(V,Q1)→ G(V,Q1) and αf : G(V,Q1)→ G(V,Q2), characterized on u : V

and U : G(V,Q1) by the very similar:

v cf (uU) = f(v, u)U − u(v cf U) (8.54)

αf (uU) = uαf (U)− ucf (αf (U)) (8.55)

Without repeating the entire proof here, we will proceed by showing how to directly construct
eqs. (8.54) and (8.55) rather than going via eqs. (8.52) and (8.53).

To warm up, we shall first construct eq. (8.55)� via an auxiliary function

αf
aux : G(V,Q1)→ G(V,Q2)→ G(V,Q2) (8.56)

αf
aux(u : V) := x 7→ ux− vcfx (8.56a)

from which we recover

αf (x) = αf
aux(1). (8.57)

5Confusingly, [70] uses uxU as notation for ucU , with the symbol flipped.
6Equation (8.54) also appears as a special case of [14, (1.41a)] with r = 1.

107

https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/contraction.lean#L239?decl=clifford_algebra.change_form

Chapter 8. Universal properties as a computational tool

This could alternatively be written as a simple application of “fold” in eq. (8.6) as αf (U) =

fold[u 7→ x 7→ ux− u cf x](U, 1). We must again show that eq. (8.56a) is linear in u and x, which
is straightforward, and eq. (8.7), which is less so:

αf
aux(u, α

f
aux(u, x)) = u(ux− u cf x))− u cf (ux− u cf x) (8.58)

= uux− u(u cf x)− u cf (ux) + u cf (u cf x) (8.59)

= Q2(u)x− u(u cf x)− (f(u, u)x− u(u cf x)) + 0 (8.60)

= (Q2(u)− f(u, u))x (8.61)
?
= Q1(u)x. (8.62)

For the ?
= line to hold, we need to define f such that f(u, u) = (Q2 −Q1)(u) = δQ(u). A typical

choice of f is the bilinear form associated with δQ, that is f(x, y) = 1
2 (δQ(x+y)−δQ(x)−δQ(y));

thus imposing the restriction that the commutative ring R is not of characteristic 2.
Defining v cf is more troublesome; we cannot directly use this same trick from “fold” in

eq. (8.6) here, as we not only need the current vector “u” and the result so far “v cf U”, but we
also need the accumulation of the input so far, “U”. The solution is to first apply the trick in
eq. (8.4), where we compute the value of U as we go along:

(v cf)aux : G(V,Q)→ G(V,Q)⊕ G(V,Q)→ G(V,Q)⊕ G(V,Q) (8.63)

(v cf)aux(u : V) := (U, x) 7→ (uU, f(v, u)U − ux) (8.63a)

This is a fold over the pairs G(V,Q)⊕G(V,Q), with the first entry U holding the input so far, and
the second entry holding our result x. Equation (8.63a) is obviously linear, and we are obliged to
show

(v cf)aux(u)
2 = (U, x) 7→ (uuU, f(v, u)(uU)− u(f(v, u)U − ux)) (8.64)

= (U, x) 7→ (Q(u)U, f(v, u)uU − f(v, u)uU +Q(u)x) (8.65)

= (U, x) 7→ (Q(u)U,Q(u)x) (8.66)

= Q(u). (8.67)

All that remains is to initialize (U, x) = (1, 0) in (v cf)aux, then discard x′ (which holds a copy
of x anyway):�

(v cf) : G(V,Q)→ G(V,Q) (8.68)

(v cf) := x 7→ c where (x′, c) = (v cf)aux(x, (1, 0)) (8.68a)

With the aid of [70, Theorem 32] we can the show that α−f is a two-sided inverse to αf�,
recovering the promised isomorphism�.

108

https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/contraction.lean#L84?decl=clifford_algebra.contract_left
https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/contraction.lean#L310?decl=clifford_algebra.change_form_change_form
https://github.com/leanprover-community/mathlib/blob/bf2428c9486c407ca38b5b3fb10b87dad0bc99fa/src/linear_algebra/clifford_algebra/contraction.lean#L350?decl=clifford_algebra.equiv_exterior

Chapter 8. Universal properties as a computational tool

8.5. Formalization
The approaches in this chapter are particularly amenable to formalization, as avoiding a basis
allows them to hold in greater generality. Notably, avoiding a basis ensures our constructions
continue to be valid in cases where V is not a free module, and does not have a basis at all.
The results in sections 8.3 and 8.3.1 link via “�” to a formalization in Lean, building on top of
the work in [10], which can be found online at https://github.com/pygae/lean-ga. They were
contributed to mathlib in [mathlib#14790].

As an example of what that formalization looks like, and a preview of what is to come later in
this thesis, theorem 8.4 is stated there as the even.lift in

33

variables {R V A : Type*}

variables [comm_ring R] [add_comm_group V] [module R V]

variables [semiring A] [algebra R A]

variables (Q : quadratic_form R V)

structure even_hom :=

(f : V →ₗ[R] V →ₗ[R] A)

(contract (v : V) : f v v = algebra_map R A (Q v))

(contract_mid (v₁ v₂ v₃ : V) : f v₁ v₂ * f v₂ v₃ = Q v₂ • f v₁ v₃)

def even.lift : even_hom Q A ≃ (clifford_algebra.even Q →ₐ[R] A) :=

sorry

where contract is theorem 8.4 and contract_mid is theorem 8.4. Of note here is that Lean forces us
to be very precise about our assumptions on the ring R and algebra A. Indeed, the formalization
of the construction in section 8.4 (contributed to mathlib in [mathlib#11468]) requires us to
additionally write down that our ring is not of characteristic two, as [invertible (2 : R)]. This
choice is further discussed in section 9.7.

8.6. Summary
Using the universal property for anything beyond trivial constructions like eq. (8.12) can appear
anywhere between demanding and impossible. This chapter demonstrates some essential building
blocks to bring more demanding constructions within reach. While we only concerned ourselves
with the universal properties related to the Clifford algebra, the strategies used apply to many
other algebraic constructions with analogous properties.

The approach of building algebraic isomorphisms using universal properties is one that we
shall revisit in chapter 10, where the Lean versions are emphasized more prominently. The
trick of using endomorphisms to construct complex recursion schemes will appear once more in
section 11.1.2.

109

https://github.com/pygae/lean-ga

9
Formalizing Clifford algebras

It soon became clear that the only real long-term solu-
tion to the problems that I encountered is to start using
computers in the verification of mathematical reasoning.

(Vladimir Voevodsky)

This chapter is adapted from “Formalizing Geometric Algebra in Lean” [10], which
was joint work with Utensil Song. The text and formalizations shown here are the
author’s, though Utensil takes credit for introducing the author to Lean, and for
exploring many early dead ends not discussed here. Section 9.7 is entirely new,
and was not part of [10].

9.1. Remarks on type theory
It is typical on paper to avoid distinguishing “the multivectors of grade zero” from “the scalars”,
or “the multivectors of grade 1” from “the vectors”; but the strict dependent typing of Lean
forces us to treat these separately. Instead of saying that the multivectors G(V,Q) “contain”
the scalars R and vectors V , we need to provide explicit mappings between these distinct types.
Respectively, these come in the form of a ring homomorphism algebra_map : R→ G(V,Q) and a
linear map ι : V → G(V,Q)1.

Typically we would assume these mappings are injective, but we can obtain many results
without needing to do so. As it turns out, the definitions outlined below permit these maps to be
non-injective, for particularly pernicious choices of R and V [71], which we shall explore further
in section 9.7.2.

1The names of which are taken from the mathlib conventions.

110

Chapter 9. Formalizing Clifford algebras

9.2. Existing formalizations of geometric algebra
While there has been no published use of Lean to formalize geometric, Clifford, or Grassman-
Cayley algebras, there are already formalizations in other theorem proving languages. To aid the
reader, when describing these other formalizations this section presents code snippets translated
into their (roughly) equivalent Lean code.

Of particular interest in these existing formalizations is the underlying definition used to define
a multivector, and how this definition can be used to define a product of some kind. While proofs
are obviously important to a formalization, every proof has to start with a theorem statement,
the expressivity of which is limited by the definitions at hand.

They will be presented roughly in order of generality.

9.2.1. Fixed-dimension representations

In [72], a formalization in Isabelle/HOL specific to G(R3) is presented that enumerates all the
r-vectors explicitly by assigning a name to each grade:

33

@[ext]

structure multivector :=

(scalar : ℝ) (vector : ℝ × ℝ × ℝ) (bivec : ℝ × ℝ × ℝ) (trivec : ℝ)

From here, the operations of an abelian group can be defined componentwise:

33

instance : has_zero multivector := ⟨

{ scalar := 0, vector := 0, bivec := 0, trivec := 0}⟩

instance : has_add multivector := ⟨λ x y,

{ scalar := x.scalar + y.scalar, vector := x.vector + y.vector,

bivec := x.bivec + y.bivec, trivec := x.trivec + y.trivec}⟩

-- and for `has_sub`, `has_neg`

and shown to satisfy its axioms using the ext lemma (chapter 5) generate by @[ext], which states
“multivectors are equal if their four components are equal”:

33

instance : add_comm_group multivector :=

{ zero := 0, add := (+), sub := has_sub.sub, neg := has_neg.neg,

add_zero := λ _, ext _ _ (add_zero _) (add_zero _) (add_zero _) (add_zero _),

..sorry /- the 4 other axioms are proved the same way -/ }

Already we can see that this approach inevitably leads to a lot of repetition, as while it would be
easy to generalize over the integer grades 0, 1, 2, 3, it’s challenging to generalize over the names
scalar, vector, bivec, and trivec.

The problem only becomes worse when defining the geometric product, as now we have 4 terms
in each of the components. As in [72], the full definition is omitted below.

111

Chapter 9. Formalizing Clifford algebras

33

instance : has_one multivector := ⟨

{ scalar := 1, vector := 0, bivec := 0, trivec := 0}⟩

instance : has_mul multivector := ⟨λ x y,

{ scalar := x.scalar * y.scalar + dot_product x.vector y.vector

- dot_product x.bivec y.bivec - x.trivec * y.trivec,

vector := sorry, bivec := sorry, trivec := sorry}

From here, [72] goes on to prove that multivectors form a ring, by showing that multiplication
associates and distributes, and operates as expected with one. Again, this would have to be done
component-wise, and the trivial but presumably verbose proofs are omitted from [72].

The tedium of the component-wise definitions and proofs can be reduced by generation from
CAS implementations and automation features within the theorem provers, but this scales poorly
to more complex statements, which may need to be tackled by hand. Needless to say, this
formalization does not scale at all to other dimensions and signatures of algebra, as no part of it
is generalized.

9.2.2. Recursive tree representations

A convenient way to escape this death-by-cases is to use a recursive definition of a multivector.
This is the approach taken by the Coq formalization of Grassmann-Cayley algebra in [73] (and
resembles the approach used by the computational Garamon library, [21]). There, the definition
is built as a balanced binary tree, where each branch indicates the presence or absence of a basis
blade, and the leafs contain the corresponding coefficient.

33

def Gₙ : ℕ → Type

| 0 := ℝ -- a scalar coefficient

| (n + 1) := Gₙ n × Gₙ n -- the parts without and with $eₙ$

In this Lean translation, the | syntax is used to pattern match against an integer representing the
remaining depth of the tree, while × captures the branching. For instance, a+a1e1+a2e2+a12e12

is represented as a term of type Gₙ 2 as ((a, a2), (a1, a12)).
The recursive data definition leads naturally to a recursive operator definition, which resembles

the following2:

33

reserve infix ` ⋏ `:70

def wedge : Π {n}, Gₙ n → Gₙ n → Gₙ n

| 0 x y := (x * y : ℝ)

| (n + 1) ⟨x₁, x₂⟩ ⟨y₁, y₂⟩ := let infix ` ⋏ ` := wedge in

(x₂ ⋏ y₂, x₁ ⋏ y₂ + x₂ ⋏ ̅y₁ᵈ)

infix ` ⋏ ` := wedge

Here, the pattern-matching is against the depth of the tree, and for non-root elements, the two
branches. This elegantly avoids having to deal with coefficient-wise proofs, and results in a
definition that works on algebras of arbitrary dimension n.

While [73] does not extend to defining a metric or the geometric product it infers, their

2The ̅y₁ᵈ notation is introduced in [73], but not essential to get a feel for how the recursive definitions look.

112

Chapter 9. Formalizing Clifford algebras

follow-up work [74] does so. This design still shares a shortcoming of the previous design—it
imbues the definition with a canonical and orthogonal basis, which is at odds with our goal of
being coordinate-free.

9.2.3. Indexed coordinate representations

The HOL light formalization in [75] offers the same generality as the one in section 9.2.2, but
slightly more abstractly describing a multivector as a set of coefficients indexed by the IDs of its
basis vectors.

33

variables (n : ℕ)

-- mapping from subsets of 1:n to coefficients

abbreviation idx := set (fin n)

def multivector : Type := idx n → ℝ

[75] goes on to define the geometric product and various derived products for arbitrary metrics,
which means their formalizations can be used for both CGA and PGA. A rough translation of
their generalized product formalization is as follows.

33

def generic_prod (a b : multivector n) (sgn : idx n → idx n → ℝ) : multivector n :=

∑ ai bi : idx n,

pi.single (ai Δ bi) ((a ai * b bi) * sgn ai bi)

Here ai Δ bi is the symmetric difference, while pi.single i x is the function with f(i) = x and
elsewhere f(·) = 0. This is then used to derive the wedge and other products as

33

def wedge (a b : multivector n) : multivector n :=

generic_prod a b $ λ ai bi,

if ai ∩ bi ≠ ∅ then

0 -- matching blades

else

-- compute sign from counting swaps

(-1) ^ (finset.card $ (ai.product bi).filter $ λ abj, abj.1 > abj.2)

Overall, the formalization that follows in [75] is expansive, covering topics ranging from the
existence of inverses to outermorphisms. However, the initial definition of multivector ingrains a
preferred choice of orthogonal (finite) basis, which while in line with many numerical packages for
Clifford algebras, is at odds with how vector spaces are formalized in mathlib. mathlib’s approach
is typically axiomatic, introducing explicit sets of basis vectors only when needed; often, only the
proof of the existence of a set of basis vectors is used.

To mesh well with mathlib, our formalization will need to support algebras over a variety of
vector spaces, not just those with coefficients in Rn. We are of course free to take on extra
assumptions should we need them (such as the scalars forming a field, or the dimension of the
space being finite), but by making the initial definitions more general we leave the door open to
future researchers interested in other algebras which do not satisfy these assumptions (such as
the cases in section 9.7).

113

Chapter 9. Formalizing Clifford algebras

9.3. The basics

9.3.1. Construction via quotients

Section 2.2.5 outlines a way to define G(V,Q) for an R-vector space V and a quadratic form
Q : V → R via constructing a quotient of the tensor algebra T (V) by the “closure” of the relation
v2 = Q(v).

This is not quite the typical definition; usually [16, §9.1] we take the quotient by the two-sided
ideal IQ generated from the set {v⊗ v−Q(v) | v ∈ V }. Generating an ideal from this set amounts
to taking the smallest superset of it that is closed under addition, and under left- and right-
multiplication by elements of T (V). When we take a quotient by an ideal, we are saying that
two elements are considered equivalent if their subtraction is in that ideal. It follows then that
we have v ⊗ v ≈ Q(v), and therefore this construction ensures that vectors square to scalars, and
is analogous to the approach in section 2.2.5.

As of writing, mathlib does not have direct support for two-sided ideals (though the work in
section 4.7.1 treads a path towards them); but it does support the equivalent operation of taking
the quotient by a “ring congruence” relation, ring_con3 [mathlib#17833], which is a relation that
is reflexive, transitive, and respects ring operations. It is this concept of a ring congruence that
makes precise the meaning of “closure” in section 2.2.5. In fact, mathlib provides a shorthand
for taking the closure of a relation r as a ring congruence relation, and then using it to form a
quotient ring_quot r4. As such, the quotient definition still translates fairly naturally into Lean
despite the lack of two-sided ideals:

33

variables {R : Type*} [comm_ring R]

variables {V : Type*} [add_comm_group V] [module R V]

variables (Q : quadratic_form R V)

inductive rel : tensor_algebra R V → tensor_algebra R V → Prop

| of (v : V) : rel

(tensor_algebra.ι R v * tensor_algebra.ι R v)

(algebra_map R (tensor_algebra R V) (Q v))

/-- `clifford_algebra Q' is the algebra over `V` with metric `Q` -/

@[derive [ring, algebra R]]

def clifford_algebra := ring_quot (clifford_algebra.rel Q)

/-- `ι Q v' is the embedding of the vector `v : V' into the Clifford

algebra with quadratic form `Q`. -/

def clifford_algebra.ι : V →ₗ[R] clifford_algebra Q :=

(ring_quot.mk_alg_hom R _).to_linear_map.comp (tensor_algebra.ι R)

The author was involved in discussion about, but did not directly author, the tensor_algebra

3While not relevant to us here, this ring_con.quotient construction is actually more general than quotients by
two-sided ideals, as it permits constructing quotients of semirings where we cannot talk about subtraction.

4Which in fact predates ring_con, originating in [mathlib#4078].

114

Chapter 9. Formalizing Clifford algebras

definition from [mathlib#4079] that this builds upon.
What makes this definition particularly attractive is that thanks to the @[derive ...] attribute

(a Lean meta-program built into mathlib), the ring and algebra structure can be automatically
proved by Lean using its knowledge of ring_quot. Note that it is this ring (clifford_algebra Q)

structure which provides the geometric product *!
The operations described in section 9.1 also fall out with minimal effort: the derived algebra

R (clifford_algebra Q) structure provides the map from the scalars algebra_map R _ r; while
the map from the vectors clifford_algebra.ι Q v is obtained by first mapping the vectors into
the tensor algebra (using tensor_algebra.ι R, the analogous ι : V → T (V) for the tensor algebra),
and then embedding them within the quotient using the API around ring_quot. Putting these
together, we can verify that our construction does indeed square vectors to scalars,

33

theorem ι_sq_scalar (v : V) : ι Q v * ι Q v = algebra_map R _ (Q v) :=

begin

erw [←alg_hom.map_mul, ring_quot.mk_alg_hom_rel R (rel.of v), alg_hom.commutes],

refl,

end

and a few other basic algebraic results about vectors,

33

lemma ι_mul_ι_add_swap (a b : V) :

ι Q a * ι Q b + ι Q b * ι Q a = algebra_map R _ (quadratic_form.polar Q a b) := sorry

lemma ι_mul_comm (a b : V) :

ι Q a * ι Q b = algebra_map R _ (quadratic_form.polar Q a b) - ι Q b * ι Q a := sorry

lemma ι_mul_ι_mul_ι (a b : V) :

ι Q a * ι Q b * ι Q a = ι Q (quadratic_form.polar Q a b • a - Q a • b) := sorry

where ι_mul_comm is eq. (2.14), and ι_mul_ι_mul_ι resembles eq. (2.6).
The remaining code to explain is our rel definition, which demonstrates how inductive types

can be used for propositions, as was introduced briefly in section 3.4.1. Here, we declare rel T₁ T₂

as a proposition over pairs of elements in T (V), but provide only one way to construct it, rel.of v.
In essence, this means that a proof of rel T₁ T₂ is a proof that there exists some v such that
T1 = ι(v) ⊗ ι(v) and T2 = Q(v). Note that mathlib uses * not ⊗ for the product in the tensor
algebra.

While not written by the author5, a better understanding of the power of inductive types can
be obtained by looking inside mathlib’s definition of ring_quot. The inductive type used by this
definition to extend our rel definition to its closure under ring operations6 is roughly as follows:

5Though the author was involved in its review in [mathlib#4078].

115

Chapter 9. Formalizing Clifford algebras

33

inductive crel (rel : R → R → Prop) : R → R → Prop

| of ⦃x y : R⦄ (h : rel x y) : crel x y

| add_left ⦃a b c⦄ : crel a b → crel (a + c) (b + c)

| mul_left ⦃a b c⦄ : crel a b → crel (a * c) (b * c)

| mul_right ⦃a b c⦄ : crel b c → crel (a * b) (a * c)

This reads as “A pair of elements are satisfied by the closure of a relation if:”

of “They satisfy the relation rel”

add_left “They can each be split into an addition with the same right operand c, and with left
operands satisfying the closure of the relation.”

mul_left, mul_right “They can each be split into a multiplication with the same left/right
operand, and with a right/left operand satisfying the closure of the relation.”

One might remark that something still seems odd about this relation, as neither this crel nor
our rel imply reflexivity, symmetry, or transitivity — however, these properties follow from the
axiomatization of Lean’s quot type, and are provided as part of the Lean prelude as quot.exact

: quot.mk r a = quot.mk r b → eqv_gen r a b7 where eqv_gen r is the closure of the relation r

under the three missing properties.

9.3.2. Recovering the universal property

While convenient to define, the quotient can be hard to state further definitions and prove
theorems about. When defining operations over a quotient, the approach is almost always to
operate on the data within the quotient, and then prove that for any operands that are considered
equal under the quotient, the output of the operation is unchanged.

Such proofs can be very challenging, especially given some short-comings in Lean when it comes
to recursing over nested inductive types (such as crel which wraps our rel above). As chapter 8
should hopefully have made clear, we would prefer to work with the universal property from
theorem 8.1.

The universal property (theorem 8.1) can be stated in Lean as

33

def lift :

{f : V →ₗ[R] A // ∀ v, f v * f v = algebra_map _ _ (Q v)}

≃ (clifford_algebra Q →ₐ[R] A) := sorry

which with the help of table 3.11, reads piecewise as:

lift : _ ≃ _ “lift” is an equivalence between...

V →ₗ[R] A ... R-linear maps from the vector space V to the algebra A...

{f : _ // ∀ v, f v * f v = algebra_map _ _ (Q v)} ... whose output squares to the metric ...

7The corresponding construction for ring_con does ensure these three properties.

116

Chapter 9. Formalizing Clifford algebras

clifford_algebra Q →ₐ[R] A ... and maps between G(V,Q) and A which are R-linear and preserve
multiplication.

The implementation of lift (as opposed to just its type) is not included in this thesis, but can
be found in [mathlib#4430], and consists largely of invoking uninteresting machinery around
ring_quot already in mathlib. This machinery within mathlib encapsulates the task of working
under the quotient, so that we don’t have to.

Note that this is a def not a lemma; the universal property is a transformation of data, and so
its construction is important. While the construction is not shown above, to be convinced that it
is truly theorem 8.1, we need only show that lift[f](ι(v)) = f(v); or in Lean:

33
theorem lift_ι_apply (f : V →ₗ[R] A) (cond : ∀ v, f v * f v = algebra_vap _ _ (Q v)) (v : V) :

lift Q ⟨f, cond⟩ (ι Q v) = f v :=

If we apply this equivalence in reverse to the identity algebra automorphism G(V,Q)→ G(V,Q)

(that is, evaluate (lift Q).symm (alg_hom.id R _)), then we recover a linear map from V to
G(V,Q) whose results square to scalars. Intuitively8, this is ι(v).

The type of lift alone is enough for us to prove statements like (lift f)(a+b∗c) = f(a)+f(b)f(c),
while its composition with ι (lift_ι_apply above) gives us the remaining interesting properties.

For the rest of our formalization, our proofs and definitions depend only on the properties
of lift and ι, and never on the quotient construction from section 9.3.1. By leveraging the
approach in section 8.2.2, this would enable future work to transfer proofs of theorems about
our construction to any other construction, such as those in section 9.2, provided that those
definitions are equipped with their own lift and ι.

9.3.3. Conjugations

Grade involution

Beyond the identity mapping (lift Q) (ι Q) = alg_hom.id R _, the next simplest operation
we can use lift to define is the grade involution X̂, which flips the sign of every component
vector. We already described how to do this using the universal property in eq. (8.12); the Lean
translation is

33
def involute : clifford_algebra Q →ₐ[R] clifford_algebra Q :=

clifford_algebra.lift Q ⟨-(ι Q), λ v, by simp⟩

where by simp is producing the trivial proof that -(ι Q v)*-(ι Q v) = (ι Q v)*(ι Q v). Just
as we saw earlier with lift, the type of involute alone is enough to prove statements about
involutions of addition and multiplication. This time, we also get from the type (i.e. that is an
→ₐ[R]) the fact that involute acts as the identity on scalars. All that remains is to prove that
involution negates vectors, which get almost for free using some @[simp] lemmas about algebra
morphisms and lift_ι_apply from above:

8But thankfully, also proven by Lean!

117

Chapter 9. Formalizing Clifford algebras

33
@[simp] lemma involute_ι (v : V) : involute (ι Q v) = -ι Q v :=

by simp [involute]

To check that the Lean simplifier is suitably trained for involute, we show that taking the
involution of a product of n vectors ((l.map $ ι Q).prod) is equivalent to scaling by (−1)n:

33

lemma involute_prod_map_ι : ∀ l : list M,

involute (l.map $ ι Q).prod = ((-1 : R)^l.length) • (l.map $ ι Q).prod

| [] := by simp

| (x :: xs) := by simp [pow_add, involute_prod_map_ι xs]

As involute is an →ₐ[R], we could also have proved this via the fact it distributes over products,
map_list_prod; but this turns out to be more annoying.

Grade reversal

A similar approach can be performed to define grade reversion X̃, although this time instead
of inserting a minus sign for each vector, we need to flip the multiplication order, following the
approach described by eqs. (8.13) and (8.14). As we saw in section 4.7, mathlib provides us a
MulOpposite.op : X → Xᵐᵒᵖ mapping for exactly that, which by definition satisfies op x * op y

= op (y * x). Applying this to each of our vectors will then give op (reverse x)), which we can
map back into X with MulOpposite.unop : Xᵐᵒᵖ → X. It can be trivially shown that this mapping
is linear and invertible (opLinearEquiv _ : X ≃ₗ[R] Xᵐᵒᵖ), which combined with some rather
ugly boilerplate gives us a complete definition for grade reversal.

44

def reverseOp : CliffordAlgebra Q →ₐ[R] (CliffordAlgebra Q)ᵐᵒᵖ :=

CliffordAlgebra.lift Q

⟨(opLinearEquiv R).toLinearMap ∘ₗ ι Q, fun m => unop_injective <| by simp⟩

@[simp]

theorem reverseOp_ι (m : M) : reverseOp (ι Q m) = op (ι Q m) := lift_ι_apply _ _ _

def reverse : CliffordAlgebra Q →ₗ[R] CliffordAlgebra Q :=

(opLinearEquiv R).symm.toLinearMap.comp reverseOp.toLinearMap

@[simp]

theorem reverse_ι (m : M) : reverse (ι Q m) = ι Q m := by simp [reverse]

@[simp] theorem op_reverse (x : CliffordAlgebra Q) : op (reverse x) = reverseOp x := rfl

While in most cases only reverse is useful, in rare cases (section 10.2.6) we will find it convenient
to have reverseOp (eq. (8.13)) available; the latter is an algebra morphism, →ₐ[R], and so it is
sometimes eligible for stronger ext lemmas (see chapter 5).

Unlike involute, reverse is only a →ₗ[R] and not a →ₐ[R], so we need to prove how it acts on
scalars and multiplication ourselves. Once again, simp makes short work of this.

118

Chapter 9. Formalizing Clifford algebras

33

@[simp] lemma reverse.map_mul (a b : clifford_algebra Q) :

reverse (a * b) = reverse b * reverse a :=

by simp [reverse]

@[simp] lemma reverse.commutes (r : R) :

reverse (algebra_map R (clifford_algebra Q) r) = algebra_map R _ r :=

by simp [reverse]

While the above definitions9 of involute and reverse give us proofs about their operations on
sums and products essentially for free, they miss one key property of these conjugations; the fact
that they are involutive, reverse (reverse x) = x. One approach we could use to prove this is to
set up some point-free equalities of algebra morphisms (as described in section 5.3, and leveraging
the extra expressiveness of reverseOp over reverse); but for the sake of variety and an excuse to
expand our toolbox, we shall proceed with a different approach. The approach we choose is the
one we might take on paper; claiming “it suffices to consider the effect on pure vectors”, which is
hiding a more rigorous induction principle.

9.3.4. Induction

The induction principle we seek is theorem 8.3, and rephrased to include slightly more Lean
code, can be stated as “If a property P holds for the algebra_map of r : R and the ι of v : V into
clifford_algebra Q, and is preserved under addition and multiplication, then it holds for all of
clifford_algebra Q”. As promised in chapter 8, the universal property alone is enough for us to
construct this principle.

An outline of the approach is:

1. Show that collectively, the inputs to our inductive principle define a subalgebra (s) of
precisely the elements that satisfy P; that is, a subset of the full Clifford algebra which
contains zero and one and is closed under addition and multiplication. By doing this, Lean
provides us with a type ↥s which bundles each element of the subalgebra with a proof that
it belongs to that subalgebra.

2. Restrict the codomain of ι Q to ↥s, and show that doing so still preserves the fact that
vectors square to scalars.

3. Lift this restricted map from V → ↥s to clifford_algebra Q → ↥s.

4. Apply this lifted map to our input a. We show that the value part of this lifting is just a,
meaning the proof part is C a, our proof for an arbitrary element.

The full Lean implementation from [mathlib#6416] is shown below.

9Which differ from the original versions in [mathlib#6491] only by the presence of reverseOp.

119

Chapter 9. Formalizing Clifford algebras

33

@[elab_as_eliminator]

lemma induction {P : clifford_algebra Q → Prop}

(h_grade0 : ∀ r, P (algebra_map R (clifford_algebra Q) r))

(h_grade1 : ∀ x, P (ι Q x))

(h_mul : ∀ a b, P a → P b → P (a * b))

(h_add : ∀ a b, P a → P b → P (a + b))

(a : clifford_algebra Q) :

P a :=

begin

-- the arguments are enough to construct a subalgebra, and a mapping into it from M

let s : subalgebra R (clifford_algebra Q) :=

{ carrier := P, mul_mem' := h_mul, add_mem' := h_add, algebra_map_mem' := h_grade0 },

let of : clifford_hom Q ↥s :=

⟨ (ι Q).cod_restrict s.to_submodule h_grade1,

λ m, subtype.eq $ ι_sq_scalar Q m ⟩,

-- the mapping through the subalgebra is the identity

have of_id : alg_hom.id R (clifford_algebra Q) = s.val.comp (lift Q of),

{ ext,

simp [of], },

-- finding a proof is finding an element of the subalgebra

convert subtype.prop (lift Q of a),

exact alg_hom.congr_fun of_id a,

end

Armed with our new hammer, we find a lot of nail-like lemmas we can easily prove. Below, we
show that involution and reverse commute, and each is involutive; that is, ˜̂x = ˆ̃x, ˆ̂x = x, and
˜̃x = x.

33

@[simp] lemma reverse_involute_commute :

function.commute (reverse : _ → clifford_algebra Q) involute :=

λ x, by induction x using clifford_algebra.induction; simp [*]

@[simp] lemma involute_involutive :

function.involutive (involute : _ → clifford_algebra Q) :=

λ x, by induction x using clifford_algebra.induction; simp [*]

@[simp] lemma reverse_involutive :

function.involutive (reverse : _ → clifford_algebra Q) :=

λ x, by induction x using clifford_algebra.induction; simp [*]

9.3.5. The wedge product

The approach described mathematically in section 8.4 leads to the following formal definitions in
[mathlib#11468]:

120

Chapter 9. Formalizing Clifford algebras

44

def changeFormEquiv

{Q Q' : QuadraticForm R M} {B : BilinForm R M} (h : B.toQuadraticForm = Q' - Q) :

CliffordAlgebra Q ≃ₗ[R] CliffordAlgebra Q' :=

sorry

def equivExterior (Q : QuadraticForm R M) [Invertible (2 : R)] :

CliffordAlgebra Q ≃ₗ[R] ExteriorAlgebra R M :=

changeFormEquiv (Q := Q) (Q' := 0) (B := QuadraticForm.associated (-Q))) (by simp)

where changeFormEquiv (B := f) h is the αf from eq. (8.53), and constructed following the
description in that section. The equivExterior definition (to_ext in eq. (2.15)) is recovered as
a special case, setting one of the two quadratic forms to zero, and choosing B as bilinear form
associated with -Q (which incurs the Invertible (2 : R) requirement).

These are supplemented with basic theorems, such as the fact that equivExterior Q 1 = 1

and equivExterior Q (ι v) = (ι v), along with some more complex statements following [70];
though there are many more important basic theorems in [70] that the author did not attempt to
formalize.

As promised in eq. (2.15), this isomorphism provides the wedge product as

44

/-- The wedge product of the Clifford algebra. -/

def wedge [Invertible (2 : R)] (x y : CliffordAlgebra Q) : CliffordAlgebra Q :=

(equivExterior Q).symm (equivExterior Q x * equivExterior Q y)

which is trivially associative as it transports the structure from the exterior algebra. This last
definition is currently not in mathlib; without a large surface of API lemmas to make it easy to
work with, for now it is better for the end user to write the equivExterior Qs explicitly.

9.4. Versors
In [10], the author formalized the versors (from section 2.1.3) as the set of multivectors closed
under multiplication (submonoid) and scaling, generated from the set of vectors (set.range (ι Q)).
Formally, this was written

33def versors := center_submonoid.closure (set.range (ι Q))

where center_submonoid is a wrapper for a set of elements, built on top of the submonoid and
sub_mul_action structures in mathlib that respectively carry proofs of closure under multiplication
and scaling.

Lean provides some useful syntax for working with sub-objects like this. Instead of working with
(x : clifford_algebra Q) (hx : x ∈ versors Q), we can write as a shorthand (v : ↥versors Q).
The advantage of “bundling” the multivector with its proof of being a versor like this is that
operations v * w and k • v can be defined to automatically produce a bundle containing a proof
that their result is also a versor; and indeed, center_submonoid does just that.

Armed with our definition, the next step is to once again construct an induction principle. Most
of the heavy lifting is done by the submonoid.closure_induction' principle in mathlib, which was

121

Chapter 9. Formalizing Clifford algebras

developed as part of this paper. The statement of this principle is:

33

/-- If a statement `C` is true for all scalars, all vectors, and all products

of versors which each satisfy `C`, then it is true for all versors. -/

lemma induction_on {C : versors Q → Prop} (v : versors Q)

(h_scalars : ∀ r : R, C ⟨algebra_map _ _ r, (versors Q).algebra_map_mem r⟩)

(h_vectors : ∀ m, C ⟨ι Q m, ι_mem m⟩)

(h_mul : ∀ a b, C a → C b → C (a * b)) :

C v := sorry

The induction principle lets us once again knock out some useful statements with uninteresting
proofs. This time, we scratch the surface of Lean’s meta-programming framework to avoid
repeating a trivial proof:

33

/-- A simple macro tactic that we can reuse between proofs -/

meta def inv_rev_tac : tactic unit :=

`[apply induction_on v,

{ intro r, simp, },

{ intro m, simp, },

{ intros a b ha hb, simp [(versors Q).mul_mem, ha, hb] }]

/-- Involute of a versor is a versor -/

@[simp] lemma involute_mem (v : versors Q) :

involute (v : clifford_algebra Q) ∈ versors Q := by inv_rev_tac

/-- Reverse of a versor is a versor -/

@[simp] lemma reverse_mem (v : versors Q) :

reverse (v : clifford_algebra Q) ∈ versors Q := by inv_rev_tac

A more interesting application of our induction principle is to prove that the product of a
versor and its reverse is a scalar:

33

/-- A versor times its reverse is a scalar -/

lemma mul_self_reverse (v : versors Q) :

∃ r : R, (v : clifford_algebra Q) * reverse (v : clifford_algebra Q) = ↑ₐr :=

begin

with_cases { apply induction_on v },

case h_grade0 : r {

refine ⟨r * r, _⟩,

simp },

case h_grade1 : m {

refine ⟨Q m, _⟩,

simp },

case h_mul : x y {

rintros ⟨(qx : R), hx⟩ (⟨qy : R), hy⟩, -- results for `x` and `y` by induction

refine ⟨qx * qy, _⟩,

simp only [reverse_mul, submonoid.coe_mul, ring_hom.map_mul],

rw [mul_assoc ↑x, ←mul_assoc ↑y, hy, algebra.commutes, ←mul_assoc, hx], }

end

122

Chapter 9. Formalizing Clifford algebras

Here we use some more verbose Lean syntax to clearly indicate each branch of the induction.
From here, we go on to show that versors have an inverse, and that for a non-trivial algebra10

over a field in an anisotropic metric, they form a group with zero (i.e. all elements but zero have
an inverse):

33

instance

{K} [field K] {V} [add_comm_group V] [module K V]

{Q : quadratic_form K V} [nontrivial (clifford_algebra Q)] [f : fact Q.anisotropic] :

group_with_zero (versors Q) := sorry

The work in this section has not made it into mathlib, as the terminology of “versor” is rather
specific to geometric algebra. In the context of Clifford algebras, a more typical object of study
would be the slightly different “Lipschitz group”, which is being developed by other mathlib
contributors (with the author’s help) in [mathlib#16040; mathlib4#9111].

9.5. Grade selection
As a reminder from chapter 6, an algebra A is said to be graded by an additive monoid I if there
exists a family of I-indexed submodules Ai such that x ∈ Ai, y ∈ Aj → xy ∈ Ai+j , 1 ∈ A0, and
every element a ∈ A has a unique decomposition11 a =

∑
i ai where ai ∈ Ai. Note that this

section of chapter 9 diverges from [10]; the original predated the work in chapter 6, and used an
inferior solution in terms of add_monoid_algebra (a type that was mentioned briefly in chapter 4).

9.5.1. N-grading

The grading described the “grade selection” of eq. (2.5) is that of the exterior algebra, as discussed
in section 2.2.6. The formalization of this is almost exactly the same as the one alluded to in
example 6.5, but as no explanation was provided there, it shall be provided here instead.

The statement of the result (this time in Lean 4) is

44

abbrev exteriorPower (n : ℕ) : Submodule R (ExteriorAlgebra R M) :=

LinearMap.range (ι R (M := M)) ^ n

instance gradedAlgebra : GradedAlgebra (exteriorPower R M) :=

which amounts to constructing the algebra isomorphism decomposeAlgequiv : ExteriorAlgebra

≃ₐ[R] ⨁ i, exteriorPower M i where the reverse map is the obvious one. Constructing the
forward map is straightforward; we use theorem 8.1, with a suitable map ι' : M →ₗ[R] ⨁ i,

↥(exteriorPower R M i) that is just a trivial repackaging of ι R : M →ₗ[R] ExteriorAlgebra R M.
Proving that this is a right-inverse to the forward map—that taking an element of

∧
(M) apart and

putting it back together again is the identity—is another easy consequence via ext of theorem 8.2.

10As of [mathlib4#7985], Nontrivial (CliffordAlgebra Q) can be deduced from the assumptions [Nontrivial R]

[Invertible (2 : R)].
11Which corresponds to requiring that the submodules Ai span the space, and they satisfy some notion of

disjointness.

123

Chapter 9. Formalizing Clifford algebras

Proving that it is a left-inverse—that taking apart an element of exteriorPower R M i results
in a piece of a single grade, is rather harder, and requires an induction principle to recurse on the
i in exteriorPower R M i. The statement of this induction principle is

44

@[elab_as_elim]

protected theorem pow_induction_on_left'

-- For a submodule `M`', a predicate for each power of it, and proofs that:

(M : Submodule R A) {motive : ∀ n : ℕ, ∀ x : A, x ∈ M ^ n → Prop}

-- 1) Within the `0`th power, the predicate is satisfies by the center of the algebra

(hr : ∀ r : R,

motive 0 (algebraMap _ _ r) (algebraMap_mem r))

-- 2) Within a the `i`th power, the predicate is closed under addition

(hadd : ∀ x y : A, ∀ i : ℕ, ∀ hx : x ∈ M ^ i, ∀ hy : y ∈ M ^ n,

motive i x hx → motive i y hy → motive i (x + y) (add_mem ‹_› ‹_›))

-- 3) Within the `i+1`th power, the predicate is true for `m * x`,

-- where `m ∈ M`' and `x` is within the `i`th power, if it is true for `x`

(hmul : ∀ m : A, ∀ hm : m ∈ M, ∀ i : ℕ, ∀ hx : x ∈ M ^ i,

motive i x hx → motive i.succ (m * x) (mul_mem_mul hm hx)) :

-- Then for any power `n`, the predicate is true on its members.

∀ n : ℕ, ∀ hx : x ∈ M ^ n, motive n x hx := sorry

which we instantiate with A := ExteriorAlgebra R M and M := LinearMap.range (ι R (M := M).
The proof of pow_induction_on_left' follows from a similar statement about binary products,
rather than powers, of submodules. With this induction principle doing the heavy lifting, the
proof in [mathlib#11542] is unremarkable.

There is something slightly surprising about this induction principle; the motive of the induction
is not just quantifying over elements of the underlying type x : A and the index of the power
n : ℕ, but also over proofs that x ∈ M ^ n, meaning that the statement being proven is itself
allowed to be a function of a proof! This turns out to be vital in the face of Lean’s dependent
types, as our use of the subtype ↥(exteriorPower R M i) (indicated by the ↥) means that the
statement of our goal really does contain proofs, for example the hx on the RHS in:

44

i: ℕ

x: ExteriorAlgebra R M

hx: x ∈ LinearMap.range (ι R) ^ i

⊢ liftι R M x = DirectSum.of (fun i => ↥(exteriorPower R M i)) i { val := x, property := hx }

This pattern of dependent induction was largely non-existent in mathlib until the author’s
contributions in [mathlib#4984; mathlib#11533; mathlib#11556; mathlib#14219]; though the
trick was worked out with the help of the community in [76].

Together, these pieces conclude the construction of the gradedAlgebra instance at the top of
section 9.5.1. Selecting the i : ℕth grade of an element x : CliffordAlgebra Q then follows as

44
abbrev gradeSelect (x : CliffordAlgebra Q) (i : ℕ) : exteriorPower R M i :=

decompose (equivExterior Q x) i

124

Chapter 9. Formalizing Clifford algebras

9.5.2. Z2-grading

If we take the definition of A graded algebra in its literal sense, then the product in question is
not the wedge product, but the geometric product. It may seem like this is problematic, as if we
take the product of two vectors ι(v)ι(w), then the result is a scalar; even though the axioms of a
graded ring suggest that we should obtain an element of degree two. The solution is to pick a
different additive monoid to number our grades by; namely Z2, where 0 = 2. This recovers the
standard split of a Clifford algebra into its even and odd parts.

As a recap from example 6.6, we define these parts in Lean as

44

/-- The even or odd submodule, defined as the supremum of the even or odd powers of

`(ι Q).range`. `evenOdd 0` is the even submodule, and `evenOdd 1` is the odd submodule. -/

def evenOdd (i : ZMod 2) : Submodule R (CliffordAlgebra Q) :=

⨆ j : { n : ℕ // ↑n = i }, LinearMap.range (ι Q) ^ (j : ℕ)

where j : { n : ℕ // ↑n = i } is a sneaky way of saying “j is a natural number with parity i”.
The formal proof that these form a graded algebra, the statement of which is

44instance gradedAlgebra : GradedAlgebra (evenOdd Q)

follows the same approach in section 9.5.1; but now not only do we need pow_induction_on_left'

to induct on powers of the submodule, but a similar iSup_induction' to induct on elements of
⨆ j, the indexed supremum. These same induction principles also lead to the formal proof of
theorem 8.5.

9.6. Constructing specific algebras
Section 2.1.4 draws attention to some particularly useful geometric algebras over the real numbers,
which until this point this formalization has been too general to mention. This section will
demonstrate how to specialize the general formalization to these specific cases.

In particular, it will show how to set up a definition of Conformal Geometric Algebra12,
G(Rn+1,1,0), which augments the initial vector space Rn with two extra dimensions spanned by
the orthogonal vectors e+ and e− where e2+ = 1 and e2− = −1. In practice it can be algebraically
convenient to span these extra dimensions instead with null basis vectors no, n∞ where no ·n∞ = 1,
and n2

o = n2
∞ = 0, as is done in [1, Table 13.1]. This approach is desirable because these basis

vectors have more geometric meaning, with no being associated with the origin, and n∞ associated
with the point at infinity.

We start by defining the conformalized vector space of a real vector space as the triple of
(original vector space V , n0 coefficient, n∞ coefficient). Note that by doing this we are choosing
a preferred basis (something we generally wanted to avoid) over the extra dimensions, but we
continue to avoid doing so over V .

12A construction of PGA in Lean can be done in very much the same way, and is included in the lean-ga repository.
It is omitted here to avoid repetition.

125

Chapter 9. Formalizing Clifford algebras

33
@[derive [add_comm_group, vector_space ℝ]]

def conformalize (V : Type*) [inner_product_space ℝ V] : Type* := V × ℝ × ℝ

We proceed by providing linear maps to extract each component:

33

def v : conformalize V →ₗ[ℝ] V := linear_map.fst _ _ _

def c_n0 : conformalize V →ₗ[ℝ] ℝ :=

(linear_map.fst _ _ _).comp (linear_map.snd _ _ _)

def c_ni : conformalize V →ₗ[ℝ] ℝ :=

(linear_map.snd _ _ _).comp (linear_map.snd _ _ _)

and some definitions to construct conformal vectors:

33

/-- The embedding of direction vectors into `conformalize V`. -/

def of_v : V →ₗ[ℝ] conformalize V := linear_map.inl _ _ _

/-- The n₀ basis vector. -/

def n0 : conformalize V := (0, 1, 0)

/-- The n∞ basis vector. -/

def ni : conformalize V := (0, 0, 1)

Finally, we can define the up mapping up(v) = n0 + v + 1
2‖v‖

2
n∞ and the conformal metric Q,

the final pieces needed to construct the Clifford algebra:

33

/-- The embedding of points from `V` to `conformalize V`. -/

def up (x : V) : conformalize V :=

n0 + of_v x + (1 / 2 * ∥x∥^2 : ℝ) • ni

/-- The metric is the metric of `V`' plus an extra term about `n0` and `ni`. -/

def Q : quadratic_form ℝ (conformalize V) :=

(bilin_form_of_real_inner.comp v v).to_quadratic_form

- (2 : ℝ) • quadratic_form.lin_mul_lin c_n0 c_ni

variables (V)

/-- Define the Conformal Geometric Algebra over `V` . -/

abbreviation CGA := clifford_algebra (Q : quadratic_form ℝ (conformalize V))

With our definitions out of the way, our next job is to train the Lean simplifier about trivial
combinations of these functions

33

@[simp] lemma v_of_v (x : V) : (of_v x).v = x := rfl

@[simp] lemma c_n0_of_v (x : V) : (of_v x).c_n0 = 0 := rfl

@[simp] lemma c_ni_of_v (x : V) : (of_v x).c_ni = 0 := rfl

-- 6 more lemmas follow combining {v, n0, ni} with {of_v, of_n0, of_ni}

From this, we can prove that Q has the form we’d expect, that up correctly produces null vectors
and that the metric between two conformal points is proportional to their distance:

126

Chapter 9. Formalizing Clifford algebras

33

@[simp] lemma Q_apply (x : conformalize V) : Q x = ∥x.v∥^2 - 2 * (x.c_n0 * x.c_ni) :=

by simp [Q, inner_self_eq_norm_sq_to_K]

@[simp] lemma Q_up (x : V) : Q (up x) = 0 :=

by simp [up, ←mul_assoc]

lemma Q_polar_up (x y : V) : quadratic_form.polar Q (up x) (up y) = -dist x y ^ 2 :=

sorry

Note that while at a glance this last result appears off by a factor of two from the “usual” result
that up(x) · up(y) = − 1

2 ‖x− y‖, this is because Lean’s quadratic_form.polar Q x y is defined
as twice the value of the inner product x · y.

These are of course only the most basic of results about CGA, and serve only to demonstrate
that the very general definition of clifford_algebra does not rule out concrete specializations.
To actually become a useful tool for formalizing CGA, many additional defs and lemmas would be
needed that connect equations in CGA to result stated using mathlib’s geometry library. One such
result would be that there is an embedding from euclidean_geometry.sphere into CGA such that
upx ∧ of_sphereS = 0 ⇐⇒ x ∈ S.

9.7. Pathological cases
While certainly the most typical description, as mentioned in section 2.2.3 the choice to define
Clifford algebras over a quadratic form Q is not universally agreed upon, and a bilinear form
B is sometimes used instead (such as in [15]). Through the lens of associative algebras, this
definition makes no difference; G(V,B) is isomorphic as an algebra to G(V, x 7→ B(x, x)), and
indeed the Lean formalization in this thesis makes it trivial to make this true by definition.
To do so, we would define quantum_clifford_algebra B as a type synonym (section 4.6) of
clifford_algebra B.to_quadratic_form, copying across the ring and algebra instances.

Where this B has an effect is in constructing the “canonical” linear isomorphism G(V,B) ∼=∧
(V); for the G(V,Q) case in eq. (8.62), to solve B(v, v) = Q(V), we chose B (there f) as the

(symmetric) bilinear form associated with Q. If we drop the symmetry requirement on B, then
we are free to add any antisymmetric bilinear form onto our previous choice of B, as described
extensively in [15]. By dropping this requirement, B cannot be determined solely from Q, and so
we must carry it around with us in our type.

Assuming we are happy to keep the symmetry requirement, the definition of this associated
bilinear form (described in section 2.2.3) includes a factor of 1

2 : R; it is for this reason that
our formalization is littered with Invertible (2 : R) assumptions. Strictly speaking, this is an
unnecessarily strong requirement; the quadratic form

Q : Z2 → Z := (x, y) 7→ x2 + y2 (9.1)

127

Chapter 9. Formalizing Clifford algebras

has an obvious symmetric bilinear form associated with it,

B : Z2 → Z2 → Z := (x1, y1) 7→ (x2, y2) 7→ x1x2 + y1y2, (9.2)

even though 2 is not invertible in Z. A future refactor could be to replace Invertible (2 : R)

with a new typeclass along the lines of

44

class HasCanonicalSymmBilinForm (Q : QuadraticForm R M) where

B : BilinForm R M

B_symm : B.IsSymm

B_unique (B' : BilinForm R M) (hB' : B.IsSymm) : B'.toQuadraticForm = Q ↔ B' = B

which carries a bilinear form B and a proof that it is the unique symmetric bilinear form associated
with the quadratic form. This would enable many results in this thesis to generalize to the
situations like eq. (9.1).

While more general than Invertible (2 : R), there are still some situations where Has

CanonicalSymmBilinForm Q is unsatisfiable. We shall look at two examples, both in the cases
where R is of characteristic two and so 1

2 : R is nonsensical due to the fact that 2 = 0.

9.7.1. Non-unique associated forms

In many cases in characteristic two, symmetric solutions are still available to B(v, v) = Q(V),
but they are no longer unique; and so there is no longer an obviously canonical choice of
G(V,Q) ∼=

∧
(V) available. For instance, over the F-vector space F2 ⊕ F2, there are at least two

ways to pick B when Q := 0: the nontrivial solution is B((x1, y1), (x2, y2)) := x1y2 + x2y1, which
is even symmetric. We can thus formalize that a unique choice of a symmetric B is not possible
(in [mathlib#18146]) as:

44

/-- `BilinForm.toQuadraticForm` is not injective on symmetric bilinear forms. -/

theorem BilinForm.not_injOn_toQuadraticForm_isSymm.{u} :

¬∀ {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M],

Set.InjOn (toQuadraticForm : BilinForm R M → QuadraticForm R M) {B | B.IsSymm} := by

The loss of a canonical G(V,Q) ∼=
∧
(V) in characteristic two is another argument in favor of

the G(V,B) spelling, as this preserves canonicity by virtue of encoding the canonical choice of
isomorphism in the type itself. However, there are greater perils awaiting us in characteristic two.

9.7.2. Non-existent associated forms, and injectivity of R→ G(V,Q)

If our R-module V is free, then we can at least guarantee that a non-symmetric associated bilinear
form exists, by choosing an ordered basis vi on V and writing

B(
∑
i

aivi,
∑
i

bivi) =
∑
i

aibiQ(vi) +
∑
i<j

aibj polar[Q](vi, vj) (9.3)

128

Chapter 9. Formalizing Clifford algebras

from which we can show B(v, v) = Q(v) since Q(
∑

i aivi) =
∑

i a
2
iQ(vi)+

∑
i<j aiaj polar[Q](vi, vj),

and thus [mathlib4#14292]:

44
theorem toQuadraticForm_surjective [Module.Free R M] :

Function.Surjective (BilinForm.toQuadraticForm : BilinForm R M → QuadraticForm R M)

However, in some cases there is no associated bilinear form at all. To reach this conclusion,
we shall first investigate whether Injective (algebraMap R (CliffordAlgebra Q)) holds; that is,
whether the scalars inside the algebra are “the same as” the ones in R. To a reader used to working
only with Clifford algebras where R := R, or one used to writing a scalar r without any explicit
“casting” between the base ring and a Clifford algebra (discussed in section 9.1), this may seem
like a silly question to which the answer is that it surely holds (as respectively, in those cases it
does hold, and the choice of notation bakes in the assumption that it holds).

As a warm-up, we can reassure ourselves that this result at least holds for the exterior algebra
[mathlib#5722] (i.e. when Q = 0). To do so, we construct an explicit inverse by invoking lift∧[0]
(the universal property for the exterior algebra), which by virtue of being an algebra morphism is
an inverse to algebraMap by construction.

For the Clifford algebra it turns out that there are cases where injectivity does not hold! The
counterexample [71] provides to demonstrate this is

R := F2[α, β, γ]/(α
2, β2, γ2), V := R3/(αe1 + βe2 + γe3), Q := v 7→ v21 + v22 + v23 . (9.4)

The punchline is that while αβγ 6= 0 in R, we have αβγ = 0 in G(V,Q); somehow, building the
Clifford algebra has shrunk our ring of scalars, and therefore the algebraMap we use to formalize
the usual “inclusion” is not an inclusion at all.

It is not too hard to formalize the construction of R and V in eq. (9.4); mathlib has a
well-developed library of quotients and polynomials, allowing us to write:

44

def rIdeal :

Ideal (MvPolynomial (Fin 3) (ZMod 2)) :=

.span { X i * X i | i }

/-- `𝔽₂[α, β, γ] / (α², β², γ²)` -/

def R : Type _ :=

MvPolynomial (Fin 3) (ZMod 2) ⧸ rIdeal

44

def vSubmodule : Submodule R (Fin 3 → R) :=

letI f : (Fin 3 → R) →ₗ[R] R :=

α • .proj 0 + β • .proj 1 + γ • .proj 2

LinearMap.ker f

/-- `R^3 / {αx + βy + γz}` -/

def V : Type _ :=

(Fin 3 → R) ⧸ vSubmodule

Defining Q is a harder, as after defining the quadratic form on R3, we need to prove the map is
well-defined under the quotient (the first sorry):

129

Chapter 9. Formalizing Clifford algebras

44

/-- The quadratic form (metric) is just euclidean -/

def Q' : QuadraticForm R (Fin 3 → R) :=

∑ i, QuadraticForm.sq.comp (.proj i)

/-- `Q'`, lifted to operate on the quotient space `V`. -/

@[simps!]

def Q : QuadraticForm K V :=

.ofPolar (fun x => Quotient.liftOn' x Q' sorry) sorry sorry sorry

The other three sorrys are trivial.
The crux of this first sorry (and in the author’s opinion, the entire proof in [71]) is showing

that when αv1 + βv2 + γv3 = 0, we have v21 + v22 + v23 = 0. This follows by left-multiplying
the assumption by each of αβ, βγ, and γα in turn, eliminating two of the three terms due to
α2 = β2 = γ2 = 0, and then using an auxiliary result that αβγx = 0 =⇒ x2 = 0. This auxiliary
result is the kind of thing that is easy to hand-wave over (“x must contain only α, β, and γ

terms”), but the devil ends up being in the details, making it very fiddly to formalize.
The route taken by the author required a substantial amount of infrastructure for dividing

(multivariate) polynomials by monomials in [mathlib#15905], which provided the definitions

44
def divMonomial (p : MvPolynomial σ R) (s : σ →₀ ℕ) : MvPolynomial σ R := sorry

def modMonomial (x : MvPolynomial σ R) (s : σ →₀ ℕ) : MvPolynomial σ R := sorry

and 20 or so obvious theorems about how they interact with each other and monomial. In fact,
these were first defined for the more general case of AddMonoidAlgebra, matching how the scalar
actions discussed in section 4.3.4 are constructed. With these operations in place, [mathlib#18633]
was able to prove the following theorem about ideals generated by monomials:

44

/-- `x` is in a monomial ideal generated by `s` iff every element of its support dominates one of

the generators. -/

theorem mem_ideal_span_monomial_image {x : MvPolynomial σ R} {s : Set (σ →₀ ℕ)} :

x ∈ Ideal.span ((fun s => monomial s (1 : R)) '' s) ↔ ∀ xi ∈ x.support, ∃ si ∈ s, si ≤ xi :=

sorry

from which we recover as a corollary a special case.

44

theorem mem_ideal_span_X_image {x : MvPolynomial σ R} {s : Set σ} :

x ∈ Ideal.span (MvPolynomial.X '' s : Set (MvPolynomial σ R)) ↔

∀ m ∈ x.support, ∃ i ∈ s, (m : σ →₀ ℕ) i ≠ 0 := sorry

This says “x is in the ideal generated by the variables in s if and only if each of its monomials
contains a variable in s”; a seemingly trivial statement mathematically!

The rest of the formalization [mathlib4#6657] is largely arithmetic manipulation, so will not
be reproduced here.

There are two interesting corollaries that follow from Injective (algebraMap R (CliffordAlgebra

Q)) not holding. The first is

Corollary 9.1. There cannot be any linear isomorphism G(V,Q) ∼=
∧
(V) that preserves the

scalars

130

Chapter 9. Formalizing Clifford algebras

which was the actual result being shown in [71]; we cannot have algebraMap preserve scalars at
one end of the isomorphism and not the other! The second is the one we set out to prove in this
section,
Corollary 9.2. Not every quadratic form can be recovered from a bilinear form B with
B(v, v) = Q(v),

which follows in [mathlib4#9670] by noting that if such a bilinear form existed, the construction
in section 8.4 would contradict corollary 9.1.

9.8. Summary
This chapter formalized a variety of elementary GA operations, and showed how to leverage various
existing definitions supplied in mathlib to do so in a way that is concise and integrates with the
rest of the library. Notably, it provides the clifford_algebra Q (or in Lean 4, CliffordAlgebra Q)
definition that will be used through the remaining formalizations in this thesis. Unlike the
formalizations that exist in other theorem provers, the resulting definition in mathlib is very
general, and works even over non-free modules.

Section 9.7.2 contained a formalization of particular interest; one that showed both the extreme
generality in which the definition holds, but also that integration into mathlib gives us a broad
selection of tools (multivariate-polynomials, quotients, results about non-zero-characteristics)
that would not be available had this formalization been standalone.

A complete archive consisting of the formalizations, the translations of parts of existing
formalizations, the precise versions of Lean and mathlib that the code is compatible with, and a
summary of the various contributions to mathlib made as part of this chapter can be found on
GitHub at

https://github.com/pygae/lean-ga

Primarily, this chapter has been about setting up useful foundations for further formalization;
it leaves plenty on the table in terms of basic results still to be formalized, especially on the
interaction between grade selection and the geometric product, such as eq. (2.5).

131

https://github.com/pygae/lean-ga

10
Isomorphisms

I suppose it is tempting, if the only tool you have is a
hammer, to treat everything as if it were a nail.

(Abraham Maslow)

A frequently-cited selling point of Clifford algebras for engineers and physicists is that they
capture the structure of various other algebraic systems in a single unified language [5, §2; 77,
§1; 14]. Informally, we might say something like “the quaternions H are a Clifford algebra”;
under the formalization described in this thesis, we interpret that to mean “the quaternions H
are isomorphic1 as a real-algebra to a Clifford algebra”. In this section, we shall demonstrate how
to use Lean to construct these isomorphisms.

There is standard strategy that we will use for every isomorphism A ∼=R B here, which is as
follows:

• Use the appropriate universal properties to construct forward (F : A→R B) and reverse
(F−1 : B →R A) algebra morphisms.

• Use the appropriate extensionality lemma (chapter 5) to show that these morphisms
compose in either order to give the identity (F−1 ◦ F = idA, F ◦ F−1 = idB), concluding
that together they form an isomorphism.

Section 10.1 works through this strategy on R, C, H, along with the dual numbers and dual
quaternions; formalizing universal properties in the process. Section 10.2 addresses isomorphisms
relating to Clifford algebras over C, building significant infrastructure around tensor products
in the process. Finally, section 10.3 links this strategy with chapter 6 via a formalization of the
“graded tensor product”.

1Or in [1, §1.2.4], “a quaternion […] is already an element of geometric algebra”, suggesting an inclusion rather
than an isomorphism.

132

Chapter 10. Isomorphisms

10.1. Well-known isomorphisms

10.1.1. Reals

We shall start with the easiest isomorphism,

Theorem 10.1. The real numbers are isomorphic as an R-algebra to G(R0),

which we will immediately generalize to

Theorem 10.2. Any commutative ring R is isomorphic as an R-algebra to G(R0).

No universal property is needed for the forward direction; we just use the canonical algebra
morphism that any R-algebra is equipped with, R→R G(R0) (mathlib’s algebraMap), which we
will write as F := r 7→ r. For the reverse direction we will need theorem 8.1, which we invoke
with the trivial linear map 0 : R0 →R R; there are no non-zero vectors in G(R0), so this is the
only possible choice! We will write this as F−1 := liftG [0].

Our first proof obligation is F−1 ◦ F = liftG [0] ◦ (x 7→ x) = idA. There is only one R-algebra
morphism from R and mathlib knows this, so we can prove this simply with subsingleton.elim

_ _. Our second obligation is F ◦ F−1 = (x 7→ x) ◦ liftG [0] = idA; applying theorem 8.2 turns
this into the easier equality of linear maps liftG [0] ◦ ι = ι. This can then also be proven with
subsingleton.elim _ _, as all linear maps from the zero module are zero!

The final step is performed by mathlib’s alg_equiv.of_alg_hom function, which assembles all
these pieces into a full construction:

33

/-- The Clifford algebra over a 0-dimensional vector space is isomorphic to its scalars. -/

protected def equiv : clifford_algebra (0 : quadratic_form R unit) ≃ₐ[R] R :=

alg_equiv.of_alg_hom

(clifford_algebra.lift (0 : quadratic_form R unit) $

⟨0, λ m : unit, (zero_mul (0 : R)).trans (algebra_map R _).map_zero.symm⟩)

(algebra.of_id R _)

(subsingleton.elim _ _)

(by { ext : 1, exact subsingleton.elim _ _ })

We conclude by showing that that reversion (section 9.3.3) and grade involution (section 9.3.3)
are the identity operations on G(R0). The former follows through the induction principle in
section 9.3.4, while the latter can be proven with by ext; simp thanks to theorem 8.2.

10.1.2. Complex numbers

This section is extracted from §7.9 of “Formalizing Geometric Algebra in Lean”
[10], instead of appearing with the main part of that work in chapter 9.

The isomorphism for the complex numbers is only very slightly more interesting:

Theorem 10.3. The complex numbers are isomorphic as an R-algebra to G(R0,1).

Intuitively this is still simple; the real axis corresponds to the scalars, while the imaginary axis

133

Chapter 10. Isomorphisms

corresponds to the single dimension of R0,1. To apply the strategy outlined at the start of
chapter 10, we will need a universal property and extensionality lemma for the complex numbers.
A suitable pair, from [mathlib#8105; mathlib#8107], is

Theorem 10.4 (Extensionality for algebra morphisms from the complex numbers). Given an
R-algebra A, and two algebra morphisms F,G : C →R A, to show F = G it suffices to show
F (i) = G(i).

Theorem 10.5 (The universal property of the complex numbers). Given an R-algebra A, there
is a one-to-one correspondence between:

elements a : A

such that a2 = −1
and

algebra morphisms
F : C→R A.

The construction of theorem 10.5 is straightforward; we choose a = F (i), and F (z) = <(z)+=(z)a.
To construct the isomorphism in theorem 10.3, we thus pick our forward map as F := liftC[ι(1)],

and our reverse map as F−1 := liftG [a 7→ ai]. Extensionality leaves us to prove F−1(F (i)) =

F−1(ι(1)) = 1i = i and F (F−1(ι(1))) = F (1i) = ι(1), where we see ι(1) instead of ι(v) due to the
extensionality lemma in theorem 5.2 that is already in mathlib.

The resulting formal construction of theorem 10.3 in [mathlib#8165] is stated as follows

33

/-- The quadratic form sending elements to the negation of their square. -/

def Q : quadratic_form ℝ ℝ := -quadratic_form.lin_mul_lin linear_map.id linear_map.id

@[simp] lemma complex.Q_apply (r : ℝ) : complex.Q r = -(r*r) := rfl

/-- The Clifford algebra over `clifford_algebra_complex.Q` is isomorphic as an `ℝ`-algebra to `ℂ`. -/

protected def equiv : clifford_algebra Q ≃ₐ[ℝ] ℂ := sorry

lemma equiv_ι : equiv (ι complex.Q 1) = complex.I := sorry

where the two lemmas demonstrate that the definitions are the ones we expect.
One advantage of the approach of treating informal “is” as indicating an isomorphism, as

discussed at the beginning of chapter 10, is that it does not force us to declare the isomorphism
canonical. Indeed, in the example above, we (or another downstream user that wants a different
meaning of “is”) could just as easily mapped ι complex.Q 1 to -complex.I instead of complex.I.

We conclude by showing (as part of [mathlib#8739]) that reversion is once again the identity
function, but involution corresponds to complex conjugation. We do this in a point-free style
(by stating the correspondence in terms of morphism compositions commuting) so that we can
once again let extensionality do all the work. For the Lean version of this involution result, the
transformation to this point-free style is requested by the suffices line in

134

Chapter 10. Isomorphisms

33

/-- `clifford_algebra.involute` is analogous to `complex.conj`. -/

@[simp] lemma to_complex_involute (c : clifford_algebra Q) :

to_complex (c.involute) = conj (to_complex c) :=

begin

suffices : to_complex.comp involute = complex.conj_ae.to_alg_hom.comp to_complex,

{ exact alg_hom.congr_fun this c },

ext : 2,

show to_complex (involute (ι Q 1)) = conj (to_complex (ι Q 1)),

simp only [involute_ι, to_complex_ι, alg_hom.map_neg, one_smul, complex.conj_I],

end

and the ext : 2 applies theorem 10.4 then theorem 5.2, reducing the goal to the statement that
appears after show.

10.1.3. Dual numbers

The dual numbers are the real numbers adjoined with a symbol ε such that ε2 = 0, and can
be written in the form r + dε for r, d : R. We shall write them as R[ε] to remind ourselves that
our coefficients are real, but they are sometimes written D. These were added to mathlib in
[mathlib#10730] (building upon a more general construction from [mathlib#5109] that we shall
discuss in section 10.1.5). A typical motivation for their use in software is that they enable
forward automatic differentiation [78, §3]; if a computation f : R→ R over the real numbers is
suitably extended to execute as g : R[ε]→ R[ε] over the dual numbers, then g(x+ ε) = f(x)+ df

dxε,
allowing the derivative to be extracted without any symbolic manipulation. This can be valuable
when running optimization algorithms2.

The connection to Clifford algebras is that

Theorem 10.6. The dual numbers R[ε] are isomorphic as an R-algebra to G(R0,0,1).

which can be constructed in almost exactly the same way as the construction for theorem 10.3 was
in section 10.1.2, by replacing −1 with 0 and i with ε in theorems 10.4 and 10.5. The universal
property this produces, formalized in [mathlib#10754], is

Theorem 10.7 (The universal property of the dual numbers). Given an R-algebra A, there is
a one-to-one correspondence between:

elements a : A

such that a2 = 0
and

algebra morphisms
F : R[ε]→R A.

The formal statement of theorem 10.6 in [mathlib#10730] is

33

/-- The Clifford algebra over a 1-dimensional vector space with 0 quadratic form is isomorphic to

the dual numbers. -/

protected def equiv {R : Type*} [comm_ring R] :

clifford_algebra (0 : quadratic_form R R) ≃ₐ[R] R[ε] :=

In fact, it was no extra work to define this for the dual numbers R[ε] with coefficients an arbitrary

2Though in practice, reverse automatic differentiation is often more useful, which does not use R[ε].

135

Chapter 10. Isomorphisms

ring R, rather than just over the real numbers.

10.1.4. Quaternions

The quaternions H are the four-dimensional real division algebra with basis {1, i, j, k}, such that

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j, ijk = −1. (10.1)

They are used extensively in computer graphics as a representation of rotations in R3. Expressed
more formally, the non-zero quaternions H× form a double cover of the Lie group SO(R3) under
the conjugation action3 v 7→ qvq−1.

When the quaternions are referred to as “included” in geometric algebra, that usually is
intended to describe the isomorphism H ∼=R G+(R3), where i, j, k correspond to the bivectors e23,
e31, e12 respectively. That is not the isomorphism we will construct in this section, though it can
be recovered via composition with the result in section 8.3.1. Instead, we will show

Theorem 10.8. The quaternions H are isomorphic as an R-algebra to G(R0,2).

which places i, j, and k in correspondence with the multivectors e1, e2, and e12 (or more formally,
ι((1, 0)), ι((0, 1)), and the product of these two).

Once again, the strategy at the start of chapter 10 requires we find a universal property and
extensionality lemma, this time for the quaternions. These are formalized in [mathlib#8551;
mathlib4#9441], and have statements

Theorem 10.9 (Extensionality for algebra morphisms from the quaternions). Given an R-
algebra A, and two algebra morphisms F,G : H →R A, to show F = G it suffices to show
F (i) = G(i), F (j) = G(j).

Theorem 10.10 (The universal property of the quaternions). Given an R-algebra A, there is
a one-to-one correspondence between:

pairs of elements ai, aj : A

such that a2i = a2j = −1 and aiaj = −ajai
and

algebra morphisms
F : H→R A.

We shall write this as F = liftH[ai, aj].

Note that neither of theorems 10.9 and 10.10 mention k, as respectively: F (k) = G(k) follows
from the results on i and j, and taking ak = aiaj is sufficient. The construction of theorem 10.10
should be of no surprise, as it follow the pattern set by theorem 10.5; we can construct ai = F (i),
aj = F (j), and F (q) = <(q) + =i(q)ai + =j(q)ai + =k(q)aiaj .

With these in place, we pick our forward map as F := liftH[ι((1, 0)), ι((0, 1))], and our reverse
map as F−1 := liftG [(x, y) 7→ xi + yj], where the side-conditions of each lift are trivial. When
proving these are inverses, extensionality leaves us to show F−1(F (i)) = F−1(ι((1, 0))) = 1i+0 = i
and similarly for j; and for the other direction, F (F−1(ι((1, 0)))) = F (i) = ι((1, 0)) and similarly

3A result that is available as a Lean formalization exercise in [79, §2.4].

136

Chapter 10. Isomorphisms

for ι((0, 1)). Once again, theorem 5.2 is responsible for helping us here, this time in combination
with the extensionality lemma for product types (binary direct sums) in section 5.2, by reducing
the obligation to show F (F−1(ι((x, y)))) = ι((x, y)) to the special cases where one of x, y is 1

and the other is 0.
As it turns out, quaternions in mathlib are defined more generally as quaternion algebras over

an arbitrary commutative ring, replacing eq. (10.1) with

i2 = c1, j2 = c2, k2 = −c1c2, ij = −ji = k, jk = −kj = −c2i, ki = −ik = −c1j (10.2)

for constants c1, c2 : R. The formalized version of theorem 10.10 in [mathlib#8670] is stated in
this generality, as it adds no meaningful additional complexity.

We conclude by showing in [mathlib#8739] that quaternion conjugation, the map sending
r + xi+ yj + zk 7→ r − xi− yj − zk, is transformed by the isomorphism of theorem 10.8 to the
Clifford conjugate (the composition of grade involution and reversion), which we write as

33

/-- The "Clifford conjugate" maps to the quaternion conjugate. -/

lemma to_quaternion_star (c : clifford_algebra (Q c₁ c₂)) :

to_quaternion (star c) = star (to_quaternion c) :=

The proof follows using our clifford_algebra.induction principle from theorem 8.3. This result is
also present in the HOL light formalization associated with [75], but [75] never shows theorem 10.8,
and instead defines the forward map as a plain function without showing it is a morphism of any
kind.

10.1.5. Dual Quaternion

The dual quaternions combine the i, j, k from the quaternions with the ε from the dual numbers,
to give an 8-dimensional ring. They too have frequent applications in computer graphics, as they
contain a subgroup that is a double-cover of the special Euclidean group SE(3), making them the
tool of choice for computational representations combining position and orientation.

They can be thought of as either the dual numbers with quaternion coefficients, the quaternions
with dual number coefficients, or the tensor product of the quaternions and the dual numbers. The
first two of these viewpoints require us to generalize our definitions of H and R[ε] in sections 10.1.3
and 10.1.4 to be over coefficients other than R, which thankfully mathlib had already prepared us
for. In the case of quaternions with dual number coefficients, the mathlib definition is already
sufficient; ℍ[R] works for any commutative ring R, so we can write ℍ[R[ε]] to obtain the quaternions
with coefficients in R[ε], and get the appropriate ring structure automatically. In the case of dual
numbers with quaternion coefficients, mathlib needed some modification; R[ε] required that R be
a commutative ring, which the quaternions ℍ[R] are not. Despite this obstruction, we will choose
to use this latter “dual numbers with quaternion coefficients” representation, as not only does
this put the words in the same order as “dual quaternions” (as DualNumber (Quaternion R)), but
it also maps more closely to the practice of writing dual quaternions as p+ qε.

137

Chapter 10. Isomorphisms

The standard isomorphism we are after is

Theorem 10.11. The dual quaternions H[ε] are isomorphic as an R-algebra to G(R0,2,1).

where taking (ei, ej , e0) as the ordered basis for R0,2,1, we identify i with ei, j with ej , k with eiej ,
and ε with eieje0. Before we can state this in Lean, we will look at how mathlib’s dual_number

had to be adjusted.

Trivial square-zero extensions over non-commutative rings

Generalizing the definition of dual_number in mathlib to non-commutative rings requires us to
understand the existing definition:

33
/-- The type of dual numbers, numbers of the form $a + bε$ where $ε^2 = 0$.-/

abbreviation dual_number (R : Type*) : Type* := tsze R R

As is typical in mathlib, the definition of the thing we care about is recovered as special case
of a more general construction. The construction in question here is the “trivial square-zero
extension” (from [mathlib#5109]); namely, the direct sum R ⊕ M for a ring R and an R-
module M , imbued with a multiplication that identifies the product of any pair of elements
in M with zero. We shall write this as tsze[R,M]. This construction is in fact even more
useful for automatic differentiation than the dual numbers, as it can be used to differentiate
functions of multiple variables4, for instance by choosing M = R2 (with basis elements εx and
εy) and lifting a function f : R → R → R to g : R[εx, εy] → R[εx, εy] → R[εx, εy] such that
g(x+ εx, y + εy) = f(x, y) + d

dxf(x, y)εx + d
dyf(x, y)εy.

The version of the trivial square-zero extension in mathlib prior to [mathlib#18384] stated this
multiplication as

(r1 +m1)(r2 +m2) = r1r2 + r1m2 + r2m1. (10.3)

This is correct for when R is commutative, but when it is non-commutative the last term r2m1

is unnatural, and prevents the operation from being associative. This can be resolved by using
m1r2 instead of r2m1 as the final term. The corrected version of this multiplication, as written
in Lean, is characterized by

33

@[simp] lemma fst_mul [has_mul R] [has_add M] [has_smul R M] [has_smul Rᵐᵒᵖ M] (x₁ x₂ : tsze R M) :

(x₁ * x₂).fst = x₁.fst * x₂.fst := rfl

@[simp] lemma snd_mul [has_mul R] [has_add M] [has_smul R M] [has_smul Rᵐᵒᵖ M] (x₁ x₂ : tsze R M) :

(x₁ * x₂).snd = x₁.fst • x₂.snd + op x₂.fst • x₁.snd := rfl

where fst is the projection onto the R part of the direct sum, and snd is the projection onto the
M part. Of interest here are the typeclass arguments [has_smul R M] [has_smul Rᵐᵒᵖ M], which
using the approach laid out in section 4.7, say that “R acts in different ways on the left and right
of M”. As a reminder from section 4.7, op r • m is our notation for scalar multiplication on the
right, mr.

4For which [mathlib4#9510] is relevant.

138

Chapter 10. Isomorphisms

With this corrected definition of multiplication, we can now obtain the associative ring structure
we desire, stated as

33
instance [ring R] [add_comm_group M] [module R M] [module Rᵐᵒᵖ M] [smul_comm_class R Rᵐᵒᵖ M] :

ring (tsze R M) :=

While the name may suggest otherwise, as discussed in section 4.7.1, [smul_comm_class R

Rᵐᵒᵖ M] captures that our scalar multiplication is associative in the sense of an R-R-bimodule:
in Lean it provides the commutativity statement r₁ • (op r₂ • m) = op r₂ • (r₁ • m), but
mathematically it represents r1(mr2) = (r1m)r2.

With this in place (and some less interesting generalizations in [mathlib#10729]), we can state
that “the dual numbers with quaternion coefficients are isomorphic to the quaternions with dual
number coefficients”, as:

33def dual_number_equiv : ℍ[R[ε]] ≃ₐ[R] (ℍ[R])[ε] := sorry

where the actual implementation replacing the sorry in [mathlib#18383] is a simple unpacking
and repacking of coefficients.

Having convinced Lean that (ℍ[R])[ε] is a ring and an R-algebra, and that the choice between
(ℍ[R])[ε] and ℍ[R[ε]] is a stylistic one of no algebraic consequence, we can write the statement
of theorem 10.11 as CliffordAlgebra Q ≃ₐ[R] ℍ[R][ε], for a suitable definition of Q.

Universal properties

Proceeding along the usual path for constructing isomorphisms from universal properties, we
find that the universal property for the dual numbers in theorem 10.7 is inadequate; it can only
provide us an R-algebra morphism from R[ε] for commutative R, not an R-algebra morphism
from A[ε] where A is a non-commutative algebra over R. We say the situation is “heterobasic”,
as there are two different base rings at play here. The universal property that we need here, from
[mathlib4#7934], is

Theorem 10.12 (The heterobasic universal property of the dual numbers). Given R-algebras
A and B over a commutative ring R, there is a one-to-one correspondence between:

algebra morphisms f : A→R B paired with
a choice of element b : B such that

b2 = 0 and ∀a, f(a)b = bf(a)

and
algebra morphisms
F : A[ε]→R B.

We shall write this as F = liftε[f, b].

The construction is such that F (x+ yε) = f(x) + f(y)b. From this universal property, we get the
extensionality lemma in theorem 10.13.

139

Chapter 10. Isomorphisms

Theorem 10.13 (Extensionality for heterobasic algebra morphisms from the dual numbers).
Given R-algebras A and B over a commutative ring R, and two algebra morphisms F,G :

A[ε] →R B, to show F = G it suffices to show F ◦ (a : A 7→ a) = G ◦ (a : A 7→ a) and
F ◦ (a 7→ aε) = G ◦ (a 7→ aε), where the equalities are between algebra morphisms and linear
maps from A to B.

Theorem 10.12 can be stated more generally for the trivial square-zero extension, as

Theorem 10.14 (The heterobasic universal property of the trivial square-zero extension
tsze[A,M]). Given R-algebras A and B over a commutative ring R and an A-A-bimodule M ,
there is a one-to-one correspondence between:

algebra morphisms f : A→R B paired with a
linear map g : M →R B such that

∀m, g(m)2 = 0

∀a,∀m, g(am) = f(a)g(m)

∀m,∀a, g(ma) = g(m)f(a)

and
algebra morphisms

F : tsze[A,M]→R B.

The construction for theorem 10.14 is such that F (a + m) = f(a) + g(m). We can state
theorem 10.13 for the square-zero extension in a similar way (and indeed the formalization does).
In the formalization, we derive the forward direction of theorem 10.12 from the forward direction
of theorem 10.14 by setting M = A and choosing the g : A→R B in theorem 10.14 to be a 7→ ab.

Constructing the isomorphism

The forward direction of our equivalence in theorem 10.11 is the easy direction; we choose
F := liftG [(ai, aj , a0) 7→ aii + aj j− a0kε], where some simple algebra shows that the argument to
liftG squares to the quadratic form.

It is the reverse direction that justified the work in section 10.1.5; we choose

F−1 : H[ε]→R G(R0,2,1) := liftε[F−1
H , xε] (10.4)

where F−1
H : H→R G(R0,2,1) := liftH[ι(ei), ι(ej)] (10.5)

xε : G(R0,2,1) := ι(ei)ι(ej)ι(e0). (10.6)

From our use of theorem 10.12’s liftε, we are left with a proof obligation to show that x2
ε = 0

(straightforward), and that xε and F−1
H (y) commute for all y : H (follows by showing that

xε commutes with ι(ei) and ι(ej)). Our use of theorem 10.10’s lift[H] comes with some other
straightforward algebraic proof obligations.

Showing that F and F−1 are inverses follows again via the ext tactic, though unfortunately
this still leaves some tedious work to be handled in [mathlib4#7962]. It is worth remembering
how universal properties have benefitted us here; while we could have taken the naïve approach
of constructing the isomorphism by writing down a mapping of the 8 basis vectors, to prove that
the map preserves multiplication we would have ended up juggling 64 terms and 16 different

140

Chapter 10. Isomorphisms

coefficients.
As with section 10.1.4, the result formalized in mathlib by the author is stated more generally

for the dual numbers of the quaternion algebra constructed using eq. (10.2), and brings little
additional complexity beyond an extra c−1

1 c−1
2 term in the definition of xε.

10.2. Complexification
Given a Clifford algebra over a real-vector space such as G(R3), it is natural to ask for a canonical
embedding into the Clifford algebra over the corresponding complex-vector space, G(C3). This
destination algebra can be thought of as the “complexified” version of G(R3). Over a vector space
with a canonical basis such as R3, the embedding is obvious; we simply embed the coefficients of
each basis blade. For instance, the multivector a+ be12 becomes (a+ 0i) + (b+ 0i)e12, which we
might prefer to write as (a+ be12) + 0i.

While mathematically these viewpoints are easy to dismiss as equivalent, type theory does
not give us that luxury for free. (a + 0i) + (b + 0i)e12 can be thought of as an element of
G(complexify(R3)), where the underlying vector space has been complexified; while (a+ be12)+0i

is an element of complexify(G(R3)), where the Clifford algebra has been complexified5. We could
evade the task of proving their equivalence by taking complexify(G(R3)) := G(complexify(R3))

by definition, but that precludes a more abstract definition of complexify that generalizes.
This more abstract definition is complexify(V) = C⊗R V , namely the real-tensor product of the

complex numbers C and our vector space V . It is straightforward to show that complexify(R3)

and C3 are isomorphic as C-vector spaces, but already some sleight of hand has been performed;
we require them to be isomorphic as quadratic vector spaces, which requires us first to declare a
canonical quadratic form QC : complexify(V)→2 C given a form Q : V →2 R.

With this in mind, a formalization target begins to precipitate: constructing the canonical
algebra isomorphism between C ⊗R G(V,Q)) and G(C ⊗R V,QC)). Before we embark on this
goal, we add one final generalization; instead of working over R and C, we will work over an
arbitrary commutative ring R (where two has an inverse6) and commutative R-algebra A. This
generalization replaces the concept of “complexifying” with that of “base changing”; we say that
A⊗R V is the base-change of V from R to A. Our target is thus:

5This is analogous to the two spellings of dual quaternions discussed in section 10.1.5.
6Which we use as a simplified proxy for “Q has an associated bilinear form”, as discussed in section 9.7.

141

Chapter 10. Isomorphisms

Theorem 10.15 (Base change commutes with the Clifford functor). Given a commutative
ring R, an R-vector space V , a quadratic form Q : V →2 R, a commutative R-algebra A, and
a quadratic form QA : A ⊗R V →2 A that satisfies QA(a ⊗ v) = a2Q(v), there is a canonical
isomorphism of algebras

A⊗R G(V,Q) ∼=A G(A⊗R V,QA) (10.7)

that identifies a⊗ ιQ(v) with ιQA
(a⊗ v) (where the ιQ is associated with G(V,Q), and the ιQA

with G(A⊗R V,QA)).

10.2.1. Base change of quadratic forms

Conspicuously absent in theorem 10.15 is any mention of how to obtain a suitable QA. While
“extend Q […] linearly to a quadratic form QA defined by QA(a⊗v) = a2Q(v)” may be excused in
a lecture series [80, §2.2], it is hiding a lot under the rug. In particular, the approach of defining
a map on a pure tensor and extending linearly only works for defining a “linear” map from the
tensor product, which can be expressed as yet another universal property:

Theorem 10.16 (The universal property of the tensor product). For any commutative ring R

and R-modules M , N , P , there is a one-to-one correspondence between:
R-linear maps M ⊗R N →R P and R-bilinear maps M →R N →R P .

The snag is that our Q is not a linear map but a quadratic one, so theorem 10.16 is not applicable
to it.

We can make a little progress here by showing the following [mathlib4#14285]:

Theorem 10.17 (Extensionality on base-changed quadratic forms). For a commutative ring
R, a commutative R-algebra A, and an R-module M , to show two quadratic forms Q1, Q2 :

A⊗R M → A are equal, it suffices to show they agree on elements of the form 1⊗m for m : M .
This reassures us that any such extension is at least unique, but doesn’t help with constructing
one.

Some doors open for us if we reach for an ordered basis on V . With this, we can appeal
to a definition of the tensor product as a quotient of sums of pure 2-tensors under a quotient
by a suitable relation (which is precisely the definition used by mathlib), and show that the
definition QA(

∑
i ai ⊗ vi) =

∑
a2iQ(vi) +

∑
i<j aiaj polar[Q](vi, vj) is invariant to any choice of

representation ai, vi. The “suitable relation” here is rather tricky to work with formally, to the
point that it is never used again in mathlib once the universal property is available. Alternatively,
we can appeal to a representation of quadratic forms as homogeneous multivariate polynomials of
degree two, and perform the base change there, as suggested in [81].

Instead, we will proceed in a third direction; by recovering the base change of quadratic forms
as a special case of a more general operation, the tensor product of quadratic forms. While it is
not immediately clear that this will make things any easier, this more general result is of interest

142

Chapter 10. Isomorphisms

in other areas of mathematics7, and so is itself a valuable formalization target.

10.2.2. Tensor products of quadratic forms

We will consider building the tensor product of two quadratic forms Q⊗(u⊗R v) = QU (u)QV (v)

where u : U and v : V . To recover the QA of section 10.2.1 satisfying QA(a ⊗ v) = a2Q(v) as
a special case, we can set U = A and QU (a) = a2. We need to be careful though, as we need
QU and Q⊗ to be A-quadratic forms, while QV is only R-quadratic; once again, the situation is
“heterobasic” as it was in section 10.1.5. Stated precisely then, we have:

Theorem 10.18 (The quadratic form on the tensor product). For a commutative ring R in
which 2 is invertible, a commutative R-algebra A, a quadratic A-module (U,QU) and a quadratic
R-module (V,QV), there is a quadratic A-module (U ⊗R V,Q⊗) such that Q⊗(u ⊗R v) =

QU (u)QV (v).

A natural extension is show an identification between Q⊗ and QU ⊗R QV , which we should
expect to be A-linear8:

Theorem 10.19 (Tensor products distribute over quadratic forms). For a commutative ring
R in which 2 is invertible, a commutative R-algebra A, an A-module U , and an R-module V ,
there is an A-linear map of type

Qdistrib : ((U →2 A)⊗R (V →2 R))→A ((V ⊗R Q)→2 A),

such that for QU an A-quadratic form on U and QV an R-quadratic form on V ,

Qdistrib(QU ⊗R QV)(u⊗R v) = QU (u)QV (v).

We can then prove theorem 10.18 using theorem 10.19 by defining Q⊗ = Qdistrib(QU ⊗R QV).
When it comes to proving theorem 10.19, we are still obstructed by our inability to apply

theorem 10.16. In fact, we now have two obstacles rather than one: we still can’t use theorem 10.16
to construct a quadratic form; but as theorem 10.16 requires the two rings to be the same we also
can’t apply it to Qdistrib as this is an A-linear map from an R-tensor product. We will postpone
this new second problem to section 10.2.4.

To solve the first problem, we shall shift from considering quadratic forms to considering bilinear
forms (thus incurring our requirement of invertible (2 : R), as discussed in section 9.79).

7Notably for the “Witt ring of quadratic forms”, for which participants of the “Lean for the Curious Mathematician
2023” workshop attempted a formalization only a few weeks after the author contributed the tensor product of
quadratic forms to mathlib.

8We will see in more detail what it means for a map from ⊗R to be A-linear in section 10.2.4.
9Strictly speaking, by using eq. (9.3) instead of the associated bilinear form, we can exhange Invertible (2 : R)

for Module.Free R M. However, while this produces a unique tensor product for the special case of a base change
thanks to theorem 10.17, it is not clear that the result is invariant to the choice of ordered basis for general tensor
products. For consistency with the approaches used elsewhere in this thesis, we shall stick to Invertible (2 : R).

143

Chapter 10. Isomorphisms

10.2.3. Tensor products of bilinear forms

Having moved our goalposts once again, we are now faced with:

Theorem 10.20 (Tensor products distribute over bilinear forms). For a commutative ring R

and commutative R-algebra A, an A-module U and an R-module V , there is an A-linear map
of type

Bdistrib : ((U →A U →A A)⊗R (V →R V →R R))→A ((U ⊗R V)→A (U ⊗R V)→A A),

such that for BU an A-bilinear form on U and BV an R-bilinear form on V ,

Bdistrib(BU ⊗R BV)(u1 ⊗R v1, u2 ⊗R v2) = BU (u)BV (v).

from which we can prove theorem 10.19 by taking BU = associated(QU), BV = associated(QV),
and extending linearly10 from Qdistrib(QU ⊗R QV)(x) = Bdistrib(BU ⊗R BV)(x, x).

We will construct this Bdistrib by assembling a chain of linear maps (→A) and equivalences
(∼=A), instead of attempting to use a single application of theorem 10.16. This is partially
motivated by the expectation that using the universal property directly will create lots of tedious
work, but also the hope that the component pieces either already exist in mathlib, or would be
valuable independent contributions. Our composition proceeds as follows:

(U →A U →A A)⊗R (V →R V →R R)

∼=A ((U ⊗A U)→A A)⊗R ((V ⊗R V)→R R) (10.8)
∼=A DualA (U ⊗A U)⊗R DualR (V ⊗R V) (10.9)

→A DualA ((U ⊗A U)⊗R (V ⊗R V)) (10.10)
∼=A DualA ((U ⊗R V)⊗A (U ⊗R V)) (10.11)
∼=A (U ⊗R V)⊗A (U ⊗R V)→A A (10.12)
∼=A (U ⊗R V)→A (U ⊗R V)→A A (10.13)

There is a fair amount to unpack here. Equations (10.8) and (10.13) are applications of the
(heterobasic11) universal property of the tensor product. Equations (10.9) and (10.12) are simply
matching against the definition of the dual vector space of a module M , DualR(M) := M →R R.
Equation (10.11) is a statement of four-way commutativity of tensor products, which we shall
look at more closely in section 10.2.4. Finally, eq. (10.10) is the statement that the dual vector
space of a tensor product is injected into by the tensor product of the dual vector spaces. Prior

10 Or to avoid that now-suspect phrase, by pre- and post- composing our already-linear Bdistrib with suitable
linear maps to convert between bilinear and quadratic forms, as

Qdistrib = (B 7→ x 7→ B(x, x)) ◦ Bdistrib ◦ (associated⊗R associated).

Note that this ⊗R is the (heterobasic!) tensor product of linear maps defined such that (f ⊗R g)(x⊗R y) =
f(x)⊗R g(y).

11A variant of theorem 10.16 that involves a second compatible ring S.

144

Chapter 10. Isomorphisms

to the author’s contributions, mathlib included all these equivalences, but only for the special
case with R = A.

In [mathlib4#6306], eqs. (10.8) to (10.13) are written as follows

44

def tensorDistrib : BilinForm A M₁ ⊗[R] BilinForm R M₂ →ₗ[A] BilinForm A (M₁ ⊗[R] M₂) :=

((TensorProduct.AlgebraTensorModule.tensorTensorTensorComm R A M₁ M₂ M₁ M₂).dualMap

≪≫ₗ (TensorProduct.lift.equiv A (M₁ ⊗[R] M₂) (M₁ ⊗[R] M₂) A).symm

≪≫ₗ LinearMap.toBilin).toLinearMap

∘ₗ TensorProduct.AlgebraTensorModule.dualDistrib R _ _ _

∘ₗ (TensorProduct.AlgebraTensorModule.congr

(BilinForm.toLin ≪≫ₗ TensorProduct.lift.equiv A _ _ _)

(BilinForm.toLin ≪≫ₗ TensorProduct.lift.equiv R _ _ _)).toLinearMap

Note that eq. (10.10) (TensorProduct.AlgebraTensorModule.dualDistrib) is the only part of
this composition that is not an equivalence. In fact, this line is an equivalence when the modules
U and V are finite and free, so we can in turn promote theorem 10.20 to an equivalence in this
case (and indeed [mathlib4#6306] does).

10.2.4. Algebraic towers in tensor products

In eq. (10.11), we need the isomorphism that is a special case12 of tensorTensorTensorComm,

(M ⊗R N)⊗A (P ⊗R Q) ∼=A (M ⊗A P)⊗R (N ⊗R Q), (10.14)

characterized by its action on pure tensors

(m⊗ n)⊗ (p⊗ q)←→ (m⊗ p)⊗ (n⊗ q), (10.15)

for A an R-algebra, and M,N,P,Q modules over suitable rings. We shall see that when formalizing
this result, we will make heavy use of some on typeclasses first introduced in section 4.3.5.

Stating four-way commutativity in Lean

For the formal statement13 of eq. (10.14) to make sense, we need all of the following twelve module
structures over our two rings (written as Lean module instances), for the left- and right-hand side
of each of the subscripted operators and relations.

12With M := P := U , N := Q := V .
13And analogously, the statements of theorems 10.19 and 10.20.

145

Chapter 10. Isomorphisms

(M ⊗R N)⊗A (P ⊗R Q) ∼=A (M ⊗A P)⊗R (N ⊗R Q) (10.16)

module R M module R N module R P module R Q module A M module A P

(10.16a)

module A (M ⊗[R] N) module A (P ⊗[R] Q) module R (M ⊗[A] P) module R (N ⊗[R] Q)

(10.16b)

module A ((M ⊗[R] N) ⊗[A] (P ⊗[R] Q)) module A ((M ⊗[A] P) ⊗[R] (N ⊗[R] Q))

(10.16c)

In practice, we would like to assume only the module structures in eq. (10.16a), and set
things up such that these structures imply the more complex structures needed by eqs. (10.16b)
and (10.16c). The building block we need for this is the following heterobasic instance,

33

instance tensor_product.left_module {R S M N : Type*}

[comm_semiring R] [semiring S] [add_comm_monoid M] [add_comm_monoid N]

[module R M] [module R N] [module S M] [smul_comm_class R S M] :

module S (M ⊗[R] N) := sorry

defined such that s • (m ⊗ₜ n) = (s • m) ⊗ₜ n. This was generalized in [mathlib#5430] from

33

instance tensor_product.module {R M N : Type*}

[comm_semiring R] [add_comm_monoid M] [add_comm_monoid N]

[module R M] [module R N] :

module R (M ⊗[R] N) := sorry

The crucial difference is that left_module works with two separate rings, R and S. The smul_comm_

class R S M assumption is needed to make the operation well-defined on the tensor product.
In the author’s initial attempt to generalize this in [mathlib#5317], it needed an is_scalar_

tower S R M assumption instead (in effect, the fact that S acts as a subring of R). The instance
of module R (M ⊗[A] P) needed in eq. (10.16b) can be found under this scheme, as here A is an
R-algebra; but it would not work for module A (P ⊗[R] Q), where R and A have exchanged roles.

If we apply tensor_product.left_module to obtain the instances in eq. (10.16b), we find that
it matches straightforwardly; the module assumptions we need are already present in eq. (10.16a),
while the smul_comm_class instances can be located as follows:

• module A (M ⊗[R] N) needs smul_comm_class R A M, which since we have algebra R A is
the same as is_scalar_tower R A M

• module A (P ⊗[R] Q) needs smul_comm_class R A P, which since we have algebra R A is
the same as is_scalar_tower R A P

• module R (M ⊗[A] P) needs smul_comm_class A R M, which since we have algebra R A is

146

Chapter 10. Isomorphisms

module A ((M ⊗[R] N) ⊗[A] (P ⊗[R] Q))

module A (M ⊗[R] N)
from eq. (10.16b)

smul_comm_class A A (M ⊗[R] N)

module A ((M ⊗[A] P) ⊗[R] (N ⊗[R] Q))

module A (M ⊗[A] P)

module A M
from eq. (10.16a)

smul_comm_class A A M
from commutativity of A

smul_comm_class A R (M ⊗[A] P)

Figure 10.1.: Typeclass resolution for module structures on four-way tensor products
In these trees, children correspond to the assumptions needed when applying tensor_

product.module to their parent.

the same as is_scalar_tower R A M

• module R (N ⊗[R] Q) is found automatically
If we do the same thing for eq. (10.16c), we find that not only do we need another module

instance of the form we saw in eq. (10.16b) (which is straightforward to solve), but also that the
smul_comm_class side goals are now rather trickier. The paths to these side goals are shown in
fig. 10.1.

To resolve these smul_comm_class leaf nodes, the following instance from [mathlib#19143] is
needed:

33

instance tensor_product.smul_comm_class_left {R S T M N : Type*}

-- assumptions needed by `M ⊗[R] N`

[comm_semiring R] [add_comm_monoid M] [add_comm_monoid N] [module R M] [module R N]

-- assumptions needed by `module S (M ⊗[R] N)`

[semiring S] [module S M] [smul_comm_class R S M]

-- assumptions needed by `module S (M ⊗[R] N)`

[semiring T] [module T M] [smul_comm_class R T M]

-- assumptions needed for the proof!

[smul_comm_class S T M] :

smul_comm_class S T (M ⊗[R] N)

This allows us to reduce these nodes to goals of the form smul_comm_class A A M and smul_comm_

class A R M, both of which we already solved above.
Finally then, we are ready to state the type of the isomorphism in eq. (10.14) in Lean:

33

def tensor_product.tensor_tensor_tensor_comm (R A M N P Q : Type*) [comm_semiring R]

[comm_semiring R] [comm_semiring A] [algebra R A]

[add_comm_monoid M] [module R M] [module A M] [is_scalar_tower R A M]

[add_comm_monoid N] [module R N]

[add_comm_monoid P] [module R P] [module A P] [is_scalar_tower R A P]

[add_comm_monoid Q] [module R Q] :

(M ⊗[R] N) ⊗[A] (P ⊗[R] Q) ≃ₗ[A] (M ⊗[A] P) ⊗[R] (N ⊗[R] Q) := sorry

This statement would not have elaborated had we not first defined tensor_product.left_module

and tensor_product.smul_comm_class_left. The sorry here is a reminder that despite all this

147

Chapter 10. Isomorphisms

work, we still haven’t even started to implement the isomorphism in eq. (10.14)!

Implementing four-way commutativity in Lean

Let us now look at filling the sorry above. There are two natural ways to break apart four-way
commutativity: by applying three-way right-commutativity on the left, or by applying three-way
left-commutativity on the right. Respectively, these break down as:

(M ⊗R N)⊗A (P ⊗R Q)

∼=A ((M ⊗R N)⊗A P)⊗R Q (10.17a)
∼=A ((M ⊗A P)⊗R N)⊗R Q (10.17b)
∼=A (M ⊗A P)⊗R (N ⊗R Q) (10.17c)

(M ⊗R N)⊗A (P ⊗R Q)

∼=A M ⊗R (N ⊗A (P ⊗R Q)) (10.18a)
∼=A M ⊗A (P ⊗R (N ⊗R Q)) (10.18b)
∼=A (M ⊗A P)⊗R (N ⊗R Q) (10.18c)

In each case, the process is to apply an associativity result (eqs. (10.17a) and (10.18a)), then the
commutativity result (eqs. (10.17b) and (10.18b)), then another associativity result (eqs. (10.17c)
and (10.18c)). The version in eq. (10.18) is how mathlib implements four-way commutativity in
the special case when A = R. Unfortunately, for the heterobasic case the RHS at eq. (10.18a) is
not well-typed, as it requires N to be an A-module, which is not one of our assumptions from
eq. (10.16a). So in reality, only one of these two natural approaches (eq. (10.17)) is viable!

The two associativity results we need for eqs. (10.17a) and (10.17c) are in fact different;
the first is in general M ⊗A (P ⊗R Q) ∼=A (M ⊗A P) ⊗R Q), while the second is in general
M ⊗R (P ⊗R Q) ∼=A (M ⊗R P) ⊗R Q. The choice to keep the colors in that sentence should
make it clear that the difference is in where the rings R and A appear. To avoid implementing
associativity twice, we need to generalize even further and introduce a third base ring, B.

Associativity is then stated M ⊗A (P ⊗R Q) ∼=B (M ⊗A P)⊗R Q), from which the two versions
we need can be recovered by setting (R,A,B) := (R,A,A) and (R,A,B) := (R,R,A), respectively.
The end result from [mathlib4#6035], this time with an implementation, is:

148

Chapter 10. Isomorphisms

33

def assoc (R A B M P Q : Type*)

-- B/A/R is a tower of algebras14

[comm_semiring R] [comm_semiring A] [semiring B]

[algebra R A] [algebra R B] [algebra A B]

-- M is a module over B/A/R in a compatible way

[add_comm_monoid M] [module R M] [module A M] [module B M]

[is_scalar_tower R A M] [is_scalar_tower R B M] [is_scalar_tower A B M]

-- P is module over A/R in a compatible way

[add_comm_monoid P] [module R P] [module A P] [is_scalar_tower R A P]

-- Q is a module over just R

[add_comm_monoid Q] [module R Q] :

(M ⊗[A] P) ⊗[R] Q ≃ₗ[B] M ⊗[A] (P ⊗[R] Q) :=

linear_equiv.of_linear

(lift $ lift $ lcurry R A B P Q _ ∘ₗ mk A B M (P ⊗[R] Q))

(lift $ uncurry R A B P Q _ ∘ₗ curry (mk R B _ Q))

(by ext; rfl)

(by ext; rfl)

While rather cryptic by itself due to the point-free computation style (section 5.3), this
implementation hints that only the tip of the iceberg has been explored in this section; the linear
maps lcurry and uncurry can be seen to take all three rings R, A, and B as arguments, indicating
that they themselves are triply-heterobasic.

For brevity, we will omit the construction needed for eq. (10.17b), which can be found in
[mathlib4#6035], as it is another even more cryptic point-free computation.

10.2.5. Tensor products of algebras

To make sense of the LHS of eq. (10.7), we need a way to consider A⊗R B as an A-algebra when
A and B are R-algebras. We can obtain this by combining our result that A⊗R B is an A-module
(in tensor_product.left_module) with the standard result that A⊗R B is a ring characterized on
pure tensors by (a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2 and 1 = 1⊗ 1. In fact, the collaborative nature
of mathlib meant that the author’s result was combined with this standard result by another
contributor in [mathlib#15241].

There are two more key results we will need to build this isomorphism. The first is an
extensionality lemma, which allows us to prove equality of algebra morphisms in terms of a
simpler equality. The weak version of this statement is

Theorem 10.21 (Extensionality on algebra morphisms from the tensor product of algebras
(weak)). For a trio of R-algebras A, B, and C, and an intermediate R-algebra S such that
A/S/R and C/S/R are towers of algebras, we can show equality of S-algebra morphisms f, g

between A⊗R B and C by showing that they agree on pure tensors; f(a⊗ b) = g(a⊗ b).

which follows trivially from the analogous statement for extensionality of linear maps.

14 Interestingly [is_scalar_tower R A B] is not actually required here; in fact we only need that they form a tower
modulo the kernel of their actions on M.

149

Chapter 10. Isomorphisms

We say this is a “weak” extensionality lemma (in reference to our remarks about theorem 5.3)
because it cannot be chained in the way described in section 5.1; if we had an equality on algebra
maps f, g : A ⊗R (B ⊗R C) →R D from a tensor product of three algebras into a fourth, we
would not be able to apply theorem 10.21 twice, just as we could not do so for the analogous
case of linear maps with theorem 5.3. As a recap: if we try, we find the first application turns
an equality of morphisms into an equality of objects D in the codomain to which theorem 10.21
cannot be re-applied, leaving us to show f(a⊗ xbc) = g(a⊗ xbc) where xbc : B⊗R C is not a pure
tensor. To be able to chain this result, we need an extensionality lemma that turns an equality of
morphisms into an equality of “simpler” morphisms.

Theorem 10.22 (Extensionality on algebra morphisms from the tensor product of algebras
(strong)). For a trio of R-algebras A, B, and C, and an intermediate R-algebra S such that
A/S/R and C/S/R are towers of algebras, we can show equality of S-algebra morphisms f, g

between A⊗R B and C by showing that:

• The compositions with the canonical inclusion A→ A⊗R B (which is itself an S-algebra
morphism) are equal.

• The compositions with the canonical inclusion B → A ⊗R B (which is an R-algebra
morphism) are equal.

In Lean, this is written as:

33

theorem ext ⦃f g : (A ⊗[R] B) →ₐ[S] C⦄

(ha : f.comp include_left = g.comp include_left)

(hb : (f.restrict_scalars R).comp include_right = (g.restrict_scalars R).comp include_right) :

f = g

where restrict_scalars is needed to cast f and g from S-algebra morphisms to R-algebra
morphisms. Returning to our earlier f, g : A ⊗R (B ⊗R C) →R D situation but applying
theorem 10.22 instead of theorem 10.21, we are left with subgoals of f(a⊗ 1⊗ 1) = g(a⊗ 1⊗ 1),
f(1⊗ b⊗1) = g(1⊗ b⊗1), and f(1⊗1⊗ c) = g(1⊗1⊗ c). Our motivation for needing this strong
result is not actually that we want to chain15 extensionality results when dealing with tensor
products like A⊗R (B ⊗R C); but that we want to chain theorem 10.22 with the extensionality
results we obtained for the Clifford algebra, theorem 8.2!

The second result we need is a universal property for tensor products of algebras from [82,
Proposition II.4.1]:

15In the sense of section 5.1.

150

Chapter 10. Isomorphisms

Theorem 10.23 (The heterobasic universal property for the tensor product of algebras). For a
trio of R-algebras A, B, and C, and an intermediate R-algebra S such that A/S/R and C/S/R

are towers of algebras, there is a one-to-one correspondence between:
pairs of algebra morphisms
f : A→S C and g : B →R C

such that f(a) and g(b) commute
and

algebra morphisms
F : A⊗R B →S C.

The forward direction of this correspondence sends the pair (f, g) to x 7→ f(x)g(x), while the
reverse direction sends the morphism F to the pair (F ◦ (a 7→ a⊗R 1), F ◦ (b 7→ 1⊗R b)). The
construction of this was added in [mathlib4#7409] as a generalization of an existing result for
commutative rings. The fact these are inverses follows trivially via ext and simp, thanks to
theorem 10.22.

10.2.6. Base change of Clifford algebras

Having resolved the last issues with the statement of eq. (10.7) in section 10.2.5, we can now
consider constructing it; this subsection summarizes [mathlib4#6778]. We will return to the
strategy outlined in chapter 10 that uses universal properties and extensionality.

The forward map

The forward map, with type A⊗R G(V,Q)→A G(A⊗R V,QA), can be stated in Lean as

44
def ofBaseChange (Q : QuadraticForm R V) :

A ⊗[R] CliffordAlgebra Q →ₐ[A] CliffordAlgebra (Q.baseChange A) :=

To apply theorem 10.23 to construct this, we need a way to consider G(A ⊗R V,QA) as an
R-algebra; until now, we have considered it only as an A-algebra (as QA is of type V → A). The
easy way to do this is to define the R-algebra structure as the A-algebra structure composed with
the canonical map R→ A; indeed, this is mathematically fine, but causes trouble in Lean due
to the typeclass instance diamonds mentioned in section 4.5.2, especially if R = Z. We instead
need to take a more involved approach, adding first the corresponding algebraic structure for
free algebras in [mathlib4#6072] (where we genuinely can compose with the canonical morphism
as long as we are careful) and quotients by rings in [mathlib4#6066], from which the results
for tensor algebras in [mathlib4#6073] and finally Clifford algebras in [mathlib4#6074] follow
trivially. In all these cases, we are obligated not only to show that there is an R-algebra structure,
but that it factors through the existing A-algebra structure (as is_scalar_tower R A _).

With these in place, we invoke theorem 10.23 using the piecewise morphisms

f : A→A G(A⊗R V,QA) := x 7→ x (the canonical embedding) (10.19)

g : G(V,Q)→R G(A⊗R V,QA) := liftG [v 7→ ι(1⊗ v)] (10.20)

where g incurs a straightforward proof obligation to show that ι(a⊗ v)2 = Qa(1⊗ v) = 12Q(v),

151

Chapter 10. Isomorphisms

and theorem 10.23 incurs a trivial one to show that the canonical embedding commutes.

The reverse map

The reverse direction, with statement

44
def toBaseChange (Q : QuadraticForm R V) :

CliffordAlgebra (Q.baseChange A) →ₐ[A] A ⊗[R] CliffordAlgebra Q

is somewhat more challenging. This does not stem from finding the function with which to
invoke theorem 8.1; we use the obvious choice liftG [id⊗R ι], which sends ι(a⊗ v) to a⊗ ι(v). The
challenge arises in proving that this is well-behaved, namely that

([id⊗R ι](v′))2 = QA(v
′) (10.21)

where v′ : A ⊗R V is an arbitrary tensor that may not be a pure tensor. Standard induction
on the tensor product leaves us in a mess here, as we do not have an easy way to express the
QA(v

′ + w′) term that appears in our induction in terms of QA(v
′) and QA(w

′).
We have seen a similar situation before; in the context of ext, we found that theorem 10.21

left us with an unpleasant non-pure tensor to deal with, due to being stated in a “weak” way in
theorem 10.21 instead of the “strong” in theorem 10.22. Adapting the solution used there, we will
resolve our difficulty with eq. (10.21) by rephrasing the ∀v, f(v)2 = Q(v) condition of theorem 8.1
(where f : V →R A) to be in terms of an equality of morphisms instead of a universally quantified
equality of elements. We will restrict ourselves to the case where 2 is invertible in A, since this is
implied by our earlier condition in section 10.2.2 that 2 is invertible in R.

We first note that for f : V →R A in a general Clifford algebra as in theorem 8.2, where 2 is
invertible in R, the requirement ∀v, f(v)2 = Q(v) is equivalent to requiring ∀v, ∀w, f(v)f(w) +
f(w)f(v) = 2B(v, w), where B is the bilinear form associated with Q. The doubly-quantified
version can be interpreted in the language of geometric algebra as saying “the map f preserves
the ‘inner’ product of two vectors”. The forward direction of this equivalence follows by writing16

f(v)f(w) + f(w)f(v) = f(v + w)2 − f(v)2 − f(w)2, while the reverse direction is trivial.
This double-quantification is very valuable to us, as it turns an equality where both sides are

quadratic, into an equality where both sides are bilinear; so we can instead formalize it as an
equality of bilinear maps:

44

theorem forall_mul_self_eq_iff (h2 : IsUnit (2 : A) (f : M →ₗ[R] A) :

(∀ x, f x * f x = algebraMap _ _ (Q x)) ↔

(LinearMap.mul R A).compl₂ f ∘ₗ f + (LinearMap.mul R A).flip.compl₂ f ∘ₗ f =

Q.polarBilin.toLin.compr₂ (Algebra.linearMap R A) := by

The right-hand side is written in a point-free style, and so is rather hard to read; but the motivation

16Which bears more than a passing resemblance to the definition of the polar operation on quadratic forms,
suggesting a generalization of quadratic forms to quadratic maps landing in another module rather than the base
ring R. Other members of the mathlib community are already attempting this generalization in [mathlib4#7569]
for unrelated reasons.

152

Chapter 10. Isomorphisms

44

-- The variables used in the samples below

let f : A ⊗[R] V →ₗ[A] A ⊗[R] CliffordAlgebra Q :=

TensorProduct.AlgebraTensorModule.map .id (ι Q)

let LHS : A ⊗[R] V →ₗ[A] A ⊗[R] V →ₗ[A] A ⊗[R] CliffordAlgebra Q :=

(mul R A).compl₂ f ∘ₗ f + (mul R A).flip.compl₂ f ∘ₗ f

let RHS : A ⊗[R] V →ₗ[A] A ⊗[R] V →ₗ[A] A ⊗[R] CliffordAlgebra Q :=

Q.polarBilin.toLin.compr₂ (Algebra.linearMap R A)

LHS = RHS (A⊗R V)→R (A⊗R V)→R G(A⊗R V,QA)

LHS ∘ₗ mk = RHS ∘ₗ mk

extensionality from a tensor product, theorem 5.5
A→R V →R (A⊗R V)→R G(A⊗R V,QA)

(LHS ∘ₗ mk) 1 = (RHS ∘ₗ mk) 1

extensionality from a ring, theorem 5.2
V →R (A⊗R V)→R G(A⊗R V,QA)

(LHS ∘ₗ mk) 1 v = (RHS ∘ₗ mk) 1 v

extensionality
(A⊗R V)→R G(A⊗R V,QA)

(LHS ∘ₗ mk) 1 v ∘ₗ mk = (RHS ∘ₗ mk) 1 v ∘ₗ mk

extensionality from a tensor product, theorem 5.5
A→R V →R G(A⊗R V,QA)

((LHS ∘ₗ mk) 1 v ∘ₗ mk) 1 = ((RHS ∘ₗ mk) 1 v ∘ₗ mk) 1

extensionality from a ring, theorem 5.2
V →R G(A⊗R V,QA)

((LHS ∘ₗ mk) 1 v ∘ₗ mk) 1 w = ((RHS ∘ₗ mk) 1 v ∘ₗ mk) 1 w

extensionality
G(A⊗R V,QA)

f (1⊗ₜv)*f (1⊗ₜw) + f (1⊗ₜw)*f (1⊗ₜv) = algebraMap R A ((Q.baseChange A).polar (1 ⊗ₜ v + 1 ⊗ₜ w))

dsimp: definitional simplification

1 ⊗ₜ (ι Q v*ι Q w + ι Q w*ι Q v) = algebraMap R A (Q.polar (v + w))

further rewriting and substituting f

Figure 10.2.: The process taken by the ext tactic to turn the bilinear version of the equality in
eq. (10.21) into a statement about pure tensors, along with the result of a final stage
of cleanup.
Each box is a goal state passed through during the proof, and the expression to the right
indicates the type of the equality.

here was not readability, but to make our proof easier. The reason this helps is that in our example,
the equality on the right is between bilinear maps (A⊗R V)→R (A⊗R V)→R G(A⊗R V,QA);
this means we can chain the standard extensionality results for linear maps from tensor products
(theorem 5.5) and linear maps from rings, and be left with an equality of our function applied
to pure tensors with 1, ([id⊗R ι](1⊗ v))([id⊗R ι](1⊗ w)) = 2BA(v, w). The exact mechanics of
this, along with the trivial goal state this leaves us with, are shown in fig. 10.2.

Once again, the fact that the forward and reverse maps are inverses follow trivially from ext;
this time, this tactic reduces these proofs to showing the maps are inverses on 1 ⊗ₜ[R] ι Q v and
ι (Q.baseChange A) (1 ⊗ₜ[R] x).

153

Chapter 10. Isomorphisms

Properties

Besides the algebraic properties that we get for free from the fact eq. (10.7) is an isomorphism of
algebras, we would also like to prove how it interacts with involution and reversion.

The statements of these results are as follows

44

/-- The involution acts only on the right of the tensor product. -/

theorem toBaseChange_involute (Q : QuadraticForm R V) (x : CliffordAlgebra (Q.baseChange A)) :

toBaseChange A Q (involute x) =

TensorProduct.map LinearMap.id (involute.toLinearMap) (toBaseChange A Q x) :=

/-- `reverse` acts only on the right of the tensor product. -/

theorem toBaseChange_reverse (Q : QuadraticForm R V) (x : CliffordAlgebra (Q.baseChange A)) :

toBaseChange A Q (reverse x) =

TensorProduct.map LinearMap.id reverse (toBaseChange A Q x) := sorry

In both cases we prove these by first stating the point-free version, and using ext to prove it. For
the involute case, this statement is straightforward,

44

theorem toBaseChange_comp_involute (Q : QuadraticForm R V) :

(toBaseChange A Q).comp involute =

(Algebra.TensorProduct.map (.id _ _) involute).comp (toBaseChange A Q) := sorry

since involute is an algebra morphism. For reverse, which is only a linear map, this approach
doesn’t work; the analogous point-free linear map spelling will not allow us to apply theorem 10.22’s
result about algebra morphisms. If we apply a weaker extensionality result for linear maps, then
we are instead left unable to apply extensionality on algebra morphisms from the Clifford algebra,
theorem 8.2; and here, there simply is no linear version.

It is here that our reverseOp : CliffordAlgebra Q →ₐ[R] (CliffordAlgebra Q)ᵐᵒᵖ from sec-
tion 9.3.3 finally becomes of value, proving we are willing to go deep into point-free nonsense:

44

theorem toBaseChange_comp_reverseOp (Q : QuadraticForm R V) :

(toBaseChange A Q).op.comp reverseOp =

((Algebra.TensorProduct.opAlgEquiv R A A (CliffordAlgebra Q)).toAlgHom.comp <|

(Algebra.TensorProduct.map (AlgEquiv.toOpposite A A).toAlgHom reverseOp).comp

(toBaseChange A Q)) := sorry

This ᵐᵒᵖ allows us to remain in the world of algebra morphisms (powering up ext), but it
also comes with a curse; we now need yet another isomorphism to move ᵐᵒᵖ through tensor
products! The one in question is opAlgEquiv : Aᵐᵒᵖ ⊗[R] Bᵐᵒᵖ ≃ₐ[S] (A ⊗[R] B)ᵐᵒᵖ, which is a
formalization from [mathlib4#6555] of:

154

Chapter 10. Isomorphisms

Theorem 10.24 (The opposite functor commutes with the tensor product). For a pair of
R-algebras A and B where A is additionally an S-algebra in a compatible way, we have a
canonical isomorphism of S-algebras

Aop ⊗R Bop ∼=S (A⊗R B)op (10.22)

which identifies op(a)⊗R op(b) with op(a⊗R b).

The construction has been omitted from this thesis as it is uninteresting.

10.3. Direct sums of quadratic vector spaces
As briefly mentioned in section 2.1.4, when working with non-degenerate Clifford algebras over
the reals, we typically invoke Sylvester’s law of inertia to restrict our vector space to Rp,q, without
any meaningful loss of generality. Under this parametrization, a complete classification can be
obtained through reduction to the table where p < 8 and q < 8 [68, §4 Table II], and extended
through Bott periodicity. This table of only 64 entries would be an excellent addition to mathlib’s
Clifford algebra library, but has been left by the author as an exercise for future contributors.

Instead, in this section we focus on a less useful (but more interesting) approach to handling
direct sums of quadratic vector spaces [68, Proposition 1.5; 80, §2.1]:

Theorem 10.25. For a commutative ring R and two R-modules V and W with associated
quadratic forms QV and QW , we have an isomorphism of algebras

G(V ⊕W,QV ⊕QW) ∼= G(V,QV) ⊗̂ G(W,QW)

which identifies ι(v + w) with ι(v) ⊗̂ 1 + 1 ⊗̂ ι(w),

where QV ⊕QW is the direct sum of quadratic forms, and ⊗̂ is the Z2-graded tensor product of
graded algebras. We can apply theorem 10.25 to Rp,q by noting that it can be thought of as a
direct sum Rp ⊕ Rq, where the left summand has the euclidean form and the right summand has
the negation thereof.

Theorem 10.25 could almost be used to recover theorem 10.11, since using theorem 10.6 and
theorem 10.8 we have

H[ε] ∼=R (H⊗R R[ε]) ∼=R
(
G(R0,2)⊗R G(R0,0,1)

)
, (10.23)

and we can use theorem 10.25 to obtain

(
G(R0,2) ⊗̂R G(R0,0,1)

) ∼=R G(R0,2 ⊕ R0,0,1) ∼=R G(R0,2,1); (10.24)

but to finish the construction we would need an equivalence between the regular and graded
tensor products, a task made challenging by the sign flips in multiplication which await us in

155

Chapter 10. Isomorphisms

eq. (10.26).

10.3.1. Direct sums of quadratic forms

The direct sum of two17 quadratic forms QV ⊕QW is defined such that (QV ⊕QW)((v, w)) =

Q(v) +Q(w), which is straightforward to formalize [mathlib#10939] as

33

@[simps]

def prod (Q₁ : quadratic_form R M₁) (Q₂ : quadratic_form R M₂) : quadratic_form R (M₁ × M₂) :=

Q₁.comp (linear_map.fst _ _ _) + Q₂.comp (linear_map.snd _ _ _)

where the @[simps] automatically generates the characterizing lemma that Q₁.prod Q₂ m = Q₁ m

.1 + Q₂ m.2. Of particular relevance to theorem 10.25 is the fact that QV ⊕QW is such that the
spaces identified with V and W are orthogonal, and so when embedded into the Clifford algebra,
vectors taken from different spaces commute:

ι((v, 0))ι((0, w)) = −ι((0, w))ι((v, 0)) (10.25)

To formalize this property, it is helpful to have a definition of orthogonality. For bilinear forms,
this definition is obvious; we declare v and w orthogonal if B(v, w) = 0. For quadratic forms in the
very general case without an associated symmetric bilinear form, we declare v and w orthogonal
when Q(v+w) = Q(v)+Q(w) (as opposed to talking about the associated bilinear form satisfying
B(v, w) = 0), as in practice this is precisely the condition needed by ι(v)ι(w) = −ι(w)ι(v):

44
def IsOrtho (Q : QuadraticForm R M) (x y : M) : Prop :=

Q (x + y) = Q x + Q y

It is straightforward to show that this is consistent with the definition of orthogonality on bilinear
forms, and this was contributed to mathlib along with the definition in [mathlib4#9141].

With this in place, we can show that elements of the direct sum of vector spaces are orthogonal
with respect to QV ⊕QW if their components are orthogonal:

44

theorem IsOrtho.prod {Q₁ : QuadraticForm R M₁} {Q₂ : QuadraticForm R M₂}

{v w : M₁ × M₂} (h₁ : Q₁.IsOrtho v.1 w.1) (h₂ : Q₂.IsOrtho v.2 w.2) :

(Q₁.prod Q₂).IsOrtho v w :=

(congr_arg₂ HAdd.hAdd h₁ h₂).trans <| add_add_add_comm _ _ _ _

and then the fact that the spaces identified with V and W are orthogonal follows trivially as a
special case:

44

@[simp] theorem IsOrtho.inl_inr {Q₁ : QuadraticForm R M₁} {Q₂ : QuadraticForm R M₂}

(m₁ : M₁) (m₂ : M₂) :

(Q₁.prod Q₂).IsOrtho (m₁, 0) (0, m₂) := .prod (.zero_right _) (.zero_left _)

Equation (10.25) then follows by eliminating the extra term from eq. (2.14) (ι_mul_comm).

17[mathlib#10939] also defines the n-ary direct sum of quadratic forms, but we will not need it in this section.

156

Chapter 10. Isomorphisms

10.3.2. The tensor product of graded algebras

The real challenge in formalizing theorem 10.25, and the reason that it is interesting, is not the
direct sum of quadratic forms QV ⊕ QW , but the tensor product of graded algebras A ⊗̂R B.
Mathematically, as a module it is “the same as” the regular tensor product, with the same
multiplicative unit 1⊗ 1, but endowed with a different multiplicative structure which satisfies

(a⊗ b)(a′ ⊗ b′) = (−1)deg a′ deg b(aa′)⊗ (bb′), (10.26)

where a, a′ : A and b, b′ : B are homogeneous elements of a single grade, and deg · is the index of
that grade. Intuitively, the sign factor can be thought of accounting for the action of exchanging
b and a′ one grade at a time.

While for theorem 10.25 we need only consider the case when deg · : Z2, we would prefer to
generalize to a setting where deg · : N is also supported, so that the same construction can be
use for the exterior algebra. We could achieve this by following Bourbaki [46, §4.7 Example
2] and replacing (−1)deg a′ deg b in eq. (10.26) with some arbitrary “commutation factor”, but
this is overkill for our purposes. Instead, we write the rather strange typeclass assumption
Module ι (Additive ℤˣ), which exploits the fact that the lawfulness of a module structure is,
through a change in notation swapping + for *, the same as a lawfulness of a power operator
[mathlib4#7866].

With this in mind, we are ready to state the typeclass assumptions needed by the graded tensor
product:

44

variable {R ι A B : Type*}

variable [CommSemiring ι] [Module ι (Additive ℤˣ)] [DecidableEq ι]

variable [CommRing R] [Ring A] [Ring B] [Algebra R A] [Algebra R B]

variable (𝒜 : ι → Submodule R A) (ℬ : ι → Submodule R B)

variable [GradedAlgebra 𝒜] [GradedAlgebra ℬ]

After writing the last line and Module ι (Additive ℤˣ), the Lean error messages provide the
context needed to deduce all the earlier lines.

The “inherit some algebraic structure but replace other algebraic structure” scenario we desire
here is well-described by the type synonym pattern from section 4.6; we can define the graded
tensor product as nominally equal to the tensor product:

157

Chapter 10. Isomorphisms

44

@[nolint unusedArguments]

def GradedTensorProduct

(𝒜 : ι → Submodule R A) (ℬ : ι → Submodule R B) [GradedAlgebra 𝒜] [GradedAlgebra ℬ] : Type _ :=

A ⊗[R] B

@[inherit_doc GradedTensorProduct]

scoped[TensorProduct] notation:100 𝒜 " ᵍ⊗[" R "] " ℬ:100 => GradedTensorProduct R 𝒜 ℬ

variable (R) in

/-- The casting equivalence to move between regular and graded tensor products. -/

def of : A ⊗[R] B ≃ₗ[R] 𝒜 ᵍ⊗[R] ℬ := LinearEquiv.refl _ _

The nolint unusedArguments is somewhat interesting; without it, Lean complains that we did
not actually use 𝒜 and ℬ, and so surely we have made a mistake! The pattern here is that of
parametrized type synonyms, which by attaching extra data to the type (here, the choice of
submodules that comprise the grading) permit this data to be available during typeclass search.
In our case 𝒜 and ℬ are vital to assembling the multiplication.

With the type and ᵍ⊗[R] notation18 in place, we can copy across the additive structure, module
structure, and the definition of 1.

44

instance : AddCommGroupWithOne (𝒜 ᵍ⊗[R] ℬ) :=

Algebra.TensorProduct.instAddCommGroupWithOne

instance : Module R (𝒜 ᵍ⊗[R] ℬ) := TensorProduct.leftModule

It is a convenient coincidence here that AddCommGroupWithOne, the mathematically unusual typeclass
needed to resolve the instance diamonds for algebras in section 4.5.2, happens to capture both
the additive structure and the definition of 1 that we wish to copy!

Multiplicative structure

What remains is to define the multiplication characterized by eq. (10.26), and demonstrate it
satisfies the axioms of a ring and an algebra. In practice, it is easiest for us to do this in two
phases; by first defining the operation as a bilinear map on the regular tensor product (⨁ i, 𝒜

i) ⊗[R] (⨁ i, ℬ i), and then transferring through the isomorphisms provided by GradedAlgebra

to obtain the operation on 𝒜 ᵍ⊗[R] ℬ.
There is one more interesting result about graded tensor products that is worth noting; the

canonical braiding of the graded tensor product that exchanges the two arguments:

Theorem 10.26. For a commutative ring R and two R-algebra A and B graded (over a suitable
index) by submodules A and B, we have an isomorphism of R-algebras

comm : A ⊗̂R B ∼= B ⊗̂R A

characterized on homogeneous elements a : Ai and b : Bj by comm(a⊗ b) = (−1)ij(b⊗ a).

18Using the notation from Bourbaki instead of ⊗̂, as the latter renders poorly in some code fonts.

158

Chapter 10. Isomorphisms

While this is ultimately a distraction for theorem 10.25, it is a convenient waypoint to route
through when building the multiplication characterized in eq. (10.26); indeed, it permits us to
construct the multiplication by chaining suitable maps.

We start with the type of bilinear maps that our multiplication belongs to,

(
⊕

i
Ai)⊗ (

⊕
i
Bi)→ (

⊕
i
Ai)⊗ (

⊕
i
Bi)→ (

⊕
i
Ai)⊗ (

⊕
i
Bi), (10.27)

which from the universal property of the tensor product is the same as

∼=
(
(
⊕

i
Ai)⊗ (

⊕
i
Bi)
)
⊗
(
(
⊕

i
Ai)⊗ (

⊕
i
Bi)
)
→ (

⊕
i
Ai)⊗ (

⊕
i
Bi). (10.28)

Via standard results on tensor product of modules, this reassociates to

∼= (
⊕

i
Ai)⊗

(
(
⊕

i
Bi)⊗ (

⊕
i
Ai)
)
⊗ (
⊕

i
Bi))→ (

⊕
i
Ai)⊗ (

⊕
i
Bi), (10.29)

where the central term can be passed through comm from theorem 10.26 to give

∼= (
⊕

i
Ai)⊗

(
(
⊕

i
Ai)⊗ (

⊕
i
Bi)
)
⊗ (
⊕

i
Bi))→ (

⊕
i
Ai)⊗ (

⊕
i
Bi). (10.30)

Further reassociation gives

∼=
(
(
⊕

i
Ai)⊗ (

⊕
i
Ai)
)
⊗
(
(
⊕

i
Bi)⊗ (

⊕
i
Bi)
)
→ (

⊕
i
Ai)⊗ (

⊕
i
Bi), (10.31)

which we can construct (non-surjectively, hence the ←) from a pair of bilinear maps on
⊕

iAi

and
⊕

i Bi separately:

←
(
(
⊕

i
Ai)→ (

⊕
i
Ai)→ (

⊕
i
Ai)
)
⊗
(
(
⊕

i
Bi)→ (

⊕
i
Bi)→ (

⊕
i
Bi)
)
. (10.32)

The two maps needed in eq. (10.32) are precisely the multiplication maps provided by the ring
structure on

⊕
iAi, which follow from our treatment of externally-graded rings in section 6.3.3.

Trading one obtuse pile of symbols for another, we can write this in Lean (in a slightly different
order) as:

44

/-- The multiplication operation for tensor products of externally `ι`-graded algebras. -/

noncomputable irreducible_def gradedMul :

letI AB := (⨁ i, 𝒜 i) ⊗[R] (⨁ i, ℬ i)

AB →ₗ[R] AB →ₗ[R] AB := by

refine TensorProduct.curry ?_ -- eq. (10.27)

refine map (LinearMap.mul' R (⨁ i, 𝒜 i)) (LinearMap.mul' R (⨁ i, ℬ i)) ∘ₗ ?_ -- eq. (10.32)

refine (assoc R ..).symm.toLinearMap ∘ₗ .lTensor _ ?_ ∘ₗ (assoc R ..).toLinearMap -- eqs. (10.28)

refine (assoc R ..).toLinearMap ∘ₗ .rTensor _ ?_ ∘ₗ (assoc R ..).symm.toLinearMap -- and (10.30)

exact (gradedComm ..).toLinearMap -- eq. (10.29)

where gradedComm is theorem 10.26 written in the externally graded form, with type (⨁ i, 𝒜 i)

159

Chapter 10. Isomorphisms

⊗[R] (⨁ i, ℬ i) ≃ₗ[R] (⨁ i, ℬ i) ⊗[R] (⨁ i, 𝒜 i).
The definition of gradedComm itself is a little easier, and can be built by first distributing

(
⊕

iAi) ⊗R (
⊕

i Bi) as
⊕

i,j Ai ⊗R Bj , then applying the commutation and sign adjustment
componentwise on the direct sum.

The proofs that gradedMul satisfies the axioms of a monoid follow the approach described in
section 5.3 (and used in section 6.3.3) of restating the results in a point-free style, and applying
the ext tactic. The application of ext used for proving associativity is unusually industrious; the
proof begins as

44

theorem gradedMul_assoc (x y z : DirectSum _ 𝒜 ⊗[R] DirectSum _ ℬ) :

gradedMul R 𝒜 ℬ (gradedMul R 𝒜 ℬ x y) z = gradedMul R 𝒜 ℬ x (gradedMul R 𝒜 ℬ y z) := by

let mA := gradedMul R 𝒜 ℬ

-- restate as an equality of morphisms so that we can use `ext`

suffices LinearMap.llcomp R _ _ _ mA ∘ₗ mA =

(LinearMap.llcomp R _ _ _ LinearMap.lflip <| LinearMap.llcomp R _ _ _ mA.flip ∘ₗ mA).flip by

exact FunLike.congr_fun (FunLike.congr_fun (FunLike.congr_fun this x) y) z

ext ixa xa ixb xb iya ya iyb yb iza za izb zb

sorry

where ext introduces twelve variables (as there are three arguments with two sides apiece, each
with an index and a value), and saved us from the alternative approach of manually performing
and closing side-goals of nine separate inductions.

One additional benefit of factoring our definition of multiplication through theorem 10.26 is
that it immediately becomes clear that we can restate eq. (10.26) more generally such that it
only requires the inner b and a′ (and not the outer a and b′) to be of homogeneous degree, since
we did not split apart the direct sums in eqs. (10.27) to (10.31) except after eq. (10.29); and here,
we only did so to the middle two of the four components.

Having built the externally-graded spelling of graded multiplication, it is straightforward to
pull it back along the following equivalence:

44

noncomputable def auxEquiv : (𝒜 ᵍ⊗[R] ℬ) ≃ₗ[R] ((⨁ i, 𝒜 i) ⊗[R] (⨁ i, ℬ i)) :=

let fA := (decomposeAlgEquiv 𝒜).toLinearEquiv

let fB := (decomposeAlgEquiv ℬ).toLinearEquiv

(of R 𝒜 ℬ).symm.trans (TensorProduct.congr fA fB)

where the type on the LHS of the ≃ₗ[R] is the internally-graded spelling, and the type on the
RHS is the externally-graded one.

We will find it helpful to provide two more algebraic results; the fact that the maps a 7→ a⊗̂1 and
b 7→ 1 ⊗̂ b are morphisms of algebras19. We provide these as includeLeft : A →ₐ[R] 𝒜 ᵍ⊗[R] ℬ

and includeRight : B →ₐ[R] (𝒜 ᵍ⊗[R] ℬ).

19In fact under a suitable graduation of A ⊗̂R B they are morphisms of graded algebras, but we do not go as far
as constructing that graduation here.

160

Chapter 10. Isomorphisms

Universal property

Our “universal property” hammer hasn’t failed us yet; so to build the isomorphism in theorem 10.25,
we naturally want to go through another universal property. The one that we want, [46, §4.7,
Proposition 10 (iii)]20, is very similar to theorem 10.23, and is stated as

Theorem 10.27 (The universal property for the graded tensor product of algebras). For a
trio of R-algebras A, B, and C where A and B are respectively graded (over a suitable index)
by submodules A and B, there is a one-to-one correspondence between:

pairs of algebra morphisms
fa : A→S C and fb : B →R C

that on homogeneous elements a : Ai and b : Bj
satisfy fa(a)gb(b) = (−1)ijfb(b)fa(a)

and
algebra morphisms
F : A ⊗̂R B →R C.

The construction is defined such that F (a⊗̂b) = fa(a)fb(b) for homogeneous a, b, fa(a) = F (a⊗̂1),
and fb(b) = F (1 ⊗̂ b).

For brevity, we omit the full Lean construction here (unsurprisingly it uses yet-more point-free
and ext gymnastics), but the full proofs (along with everything else found under section 10.3.2)
are now in mathlib due to the author’s [mathlib4#7394].

The last piece we need is an extensionality lemma, with statement

Theorem 10.28 (Extensionality for the the graded tensor product of algebra). For a trio
of R-algebras A, B, and C where A and B are respectively graded (over a suitable index) by
submodules A and B, to show a pair of algebra morphisms F,G : A ⊗̂R B →R C are equal, it
suffices to show they agree when composed with each of the canonical morphisms a 7→ a ⊗̂ 1 and
b 7→ 1 ⊗̂ b.

Using the same strategy as we did for theorem 8.2, this follows from pulling the equality back
along the equivalence defined by the universal property in theorem 10.27, and equating the two
halves of the resulting pairs (fa, fb) = (ga, gb).

10.3.3. Constructing the isomorphism

By this point the reader is likely rather tired of point-free nonsense, so we shall cut to the
characterization of theorem 10.25 rather than showing its full construction.

The forward map, as written in [68, Proposition 1.5], is characterized by:

44

def ofProd : CliffordAlgebra (Q₁.prod Q₂) →ₐ[R] (evenOdd Q₁ ᵍ⊗[R] evenOdd Q₂) := sorry

lemma ofProd_ι_mk (m₁ : M₁) (m₂ : M₂) :

ofProd Q₁ Q₂ (ι _ (m₁, m₂)) = ι Q₁ m₁ ᵍ⊗ₜ 1 + 1 ᵍ⊗ₜ ι Q₂ m₂ := sorry

The construction follows by invoking theorem 8.1 with an inscrutable point-free spelling of

20Bourbaki develops things in the generality of n-ary tensors products, which do exist in mathlib [mathlib#5311],
but as an entirely parallel development. It would be possible but unrewarding to repeat the entirety of
section 10.3 for this n-ary case.

161

Chapter 10. Isomorphisms

(m1,m2) 7→ ι(m1) ⊗̂ 1 + 1 ⊗̂ ι(m2)
21. We are left to prove a slightly fiddly but ultimately simple

algebraic statement about the square of this map.
The reverse map is rather more work (and not provided constructively by [68]), and characterized

by:

44

def toProd : evenOdd Q₁ ᵍ⊗[R] evenOdd Q₂ →ₐ[R] CliffordAlgebra (Q₁.prod Q₂) := sorry

lemma toProd_ι_tmul_one (m₁ : M₁) : toProd Q₁ Q₂ (ι _ m₁ ᵍ⊗ₜ 1) = ι _ (m₁, 0) := sorry

lemma toProd_one_tmul_ι (m₂ : M₂) : toProd Q₁ Q₂ (1 ᵍ⊗ₜ ι _ m₂) = ι _ (0, m₂) := sorry

and follows from an application of theorem 10.27 with the obvious inclusions G(V,QV) →
G(V ⊕W,QV ⊕QW) (written as map (inl Q₁ Q₂)) and G(W,QW)→ G(W⊕W,QV ⊕QW) (written
as map (inr Q₁ Q₂)). We then must show these maps satisfy the commutativity requirement of
theorem 10.28, and pay what the author can only assume is the price for not having expressed
this requirement in a point-free manner22, via a comparatively grueling 40 line proof, unaided by
ext and subjected to four fiddly dependent inductions. The statement of this result is:

44

theorem map_mul_map_of_isOrtho_of_mem_evenOdd

(f₁ : Q₁ →qᵢ Qₙ) (f₂ : Q₂ →qᵢ Qₙ) (hf : ∀ x y, Qₙ.IsOrtho (f₁ x) (f₂ y))

(m₁ : CliffordAlgebra Q₁) (m₂ : CliffordAlgebra Q₂)

{i₁ i₂ : ZMod 2} (hm₁ : m₁ ∈ evenOdd Q₁ i₁) (hm₂ : m₂ ∈ evenOdd Q₂ i₂) :

map f₁ m₁ * map f₂ m₂ = (-1 : ℤˣ) ^ (i₂ * i₁) • (map f₂ m₂ * map f₁ m₁) := by

which for our particular case we instantiate with f₁ := inl Q₁ Q₂ and f₂ := inl Q₁ Q₂.
The full proofs are left to [mathlib4#7644].

10.4. Summary
This chapter has demonstrated repeatedly, through examples around Clifford algebras, how to
use universal properties to construct isomorphisms. While the isomorphisms themselves are far
from novel, the approach of constructing them via explicit reference to universal properties is at
the very least unusual.

The author is aware of no prior formalizations that cover the content in section 10.1 (let alone
future sections of this chapter); [72] concerns itself only with G(R3) so none of the isomorphisms
in this chapter can even be stated, [75] constructs a map to the quaternions but is silent about
its properties, [74] makes no reference to quaternions at all, and the author could not find any
mention of Clifford algebras in Isabelle’s “Archive of Formal Proofs”. One of the benefits of
mathlib is that by having all the formalizations in one place, there is a natural place to contribute
links between formalized objects such as these.

The universal properties throughout this chapter are themselves likely also not novel, as
while the author was unable to find some of them in literature, their statements are obvious.
Theorem 10.14 is seemingly an exception to this, as other formalizations of dual numbers (like

21Made more obtuse by the fact the codomain involves the sub-types evenOdd Qᵢ.
22Which could perhaps be done via theorem 10.26, or by developing the theory of morphisms of graded algebras.

162

Chapter 10. Isomorphisms

the ones used to build the dual quaternions in the Coq formalization associated with [83]) are not
generalized to the trivial square zero extension.

The results in section 10.2 provide a demonstration of the indispensability of the typeclass
infrastructure from chapter 4, and also represent broad improvements to the results about mathlib’s
tensor_product by the author.

Finally, the results in section 10.3 provide a demonstration that the infrastructure in chapter 6
is usable in practice. While its results are once again not novel, the use of universal properties to
provide an explicit construction is. One consequence of this approach is that theorem 10.25 is
stated very generally—we did not assume that our base ring was a field, nor did we even assume
that 2 : R was invertible—and so our results apply even to the pathological cases explored in
section 9.7.

163

11
Further formalizations

The numbers formed up and marched past his brain in
terrified obedience. Division and multiplication were
discovered. Algebra was invented and provided an in-
teresting diversion for a minute or two. And then he
felt the fog of numbers drift away, and looked up and
saw the sparkling, distant mountains of calculus.

(Terry Pratchett)

The author is conscious that Clifford algebras are of relatively niche interest in the space of
formal mathematics. In some ways, the benefit of formalizing results about them was as much in
the journey (formalizing the fundamental tools in part II and many unremarkable yet essential
theorems not mentioned in this thesis) as it was in these destinations. Some of the author’s
journeys never reached their destination; in some cases because a shorter route was found, and in
others, simply because the destination was too far away. These incomplete journeys would not
make sense as part of chapter 9 or chapter 10, but some of them are still interesting in their own
right.

This chapter presents one of each case; section 11.1 contains a fruitful exploration into alternating
maps that proved too indirect to reach the wedge product, while section 11.2 explores formalizations
about exp(x) on objects adjacent to the Clifford algebra. While not useful to the author’s results
in Clifford algebras, they have already proved useful to other users of mathlib.

11.1. Alternating maps
Before the approach in section 9.3.5 was taken to implement the wedge product, some wrong
turns were explored. In particular, one way to define a∧ b∧ c (on pure vectors) is as 1

3! (abc−acb+

cab− cba+ bca− bac); that is, by computing the “alternatization” of the geometric product. In
general, for a product of n vectors, the scale factor is 1

n! , and the sign for each term corresponds
to the sign of the permutation of the vectors. As remarked in [70, §1], this approach is undesirable

164

Chapter 11. Further formalizations

from the perspective of generality, as it requires1 that our base ring is divisible by all n!.
Of course, the fact that this wasn’t helpful for the definition of the wedge product does not

mean it cannot be formalized, and indeed formalizing it allows future users of mathlib to prove
that the two approaches are equivalent. The general construction worth extracting here is that of
computing the alternatization of multilinear maps; which in turn, makes it desirable to have a
formal definition of alternating maps.

The formalization of AlternatingMap in mathlib originates from [mathlib#5102], which the
author revived and adapted from an earlier version by Zhangir Azerbayev, and is as follows:

44

/-- An alternating map is a multilinear map that vanishes when two of its arguments are equal. -/

structure AlternatingMap

(R M N ι : Type*) [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N]

extends MultilinearMap R (fun _ : ι => M) N where

/-- The map is alternating: if `v` has two equal coordinates, then `f v = 0`. -/

map_eq_zero_of_eq' (v : ι → M) (i j : ι) : v i = v j → i ≠ j → toFun v = 0

An immediate application of this definition is to prove that the exterior product (that is, the *

operator for ExteriorAlgebra R M) is alternating, which can be stated as

44
/-- The product of `n` terms of the form `ι R m` is an alternating map. -/

def ιMulti (n : ℕ) : AlternatingMap R M (ExteriorAlgebra R M) (Fin n) :=

The construction of the map is trivial, though the proof that it is alternating [mathlib#5124]
requires some slightly fiddly induction.

As for the alternatization of a MultilinearMap, it can be defined simply as ∑ σ : Perm ι, σ

.sign • m.domDomCongr σ, where σ.sign is the sign of a permutation (and predates the author’s
contributions to mathlib), and m.domDomCongr σ from [mathlib#5136] is the multilinear map m

with its arguments permuted by σ. It is straightforward to prove that this alternatization satisfies
map_eq_zero_of_eq and therefore is alternating.

A somewhat unexpected benefit of this work is that it generalized many results about Matrix

.det (as the determinant is an alternating map in the rows or columns of a matrix), and allowed
many existing proofs to be simplified down to a single application of a lemma about alternating
maps [mathlib#6708]. This is another case where writing things in a point-free style (section 5.3)
pays dividends; but as usual, at the cost of locally making things harder to read. The definitions
before and after this refactor are shown in listing 11.1.

11.1.1. Products of alternating maps

One more particularly interesting formalization about alternating maps is [mathlib#5269], which
formalizes a product on alternating maps. This is defined in [84, Proposition 22.24] as

(f ∧ g)(u1, . . . , um+n) =
∑

shuffle(m,n)

sign(σ)f(uσ(1), . . . , uσ(m))g(uσ(m+1), . . . , uσ(m+n)), (11.1)

1Recall that in section 9.3.5, we needed only that 2 be invertible; and as described in section 9.7, even this is
stronger than necessary when a bilinear form is available.

165

Chapter 11. Further formalizations

33

definition det (M : matrix n n R) : R :=

∑ σ : perm n, σ.sign • ∏ i, M (σ i) i

theorem det_zero_of_row_eq

(i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 :=

sorry -- 12 lines of proof follow

33

/-- An `alternating_map` in the rows of the matrix. -/

def det_row_multilinear : alternating_map R (n → R) R n :=

((multilinear_map.mk_pi_algebra R n R).comp_linear_map

(linear_map.proj)).alternatization

abbreviation det (M : matrix n n R) : R :=

det_row_multilinear M

lemma det_apply (M : matrix n n R) :

M.det = ∑ σ : perm n, σ.sign • ∏ i, M (σ i) i :=

multilinear_map.alternatization_apply _ M

theorem det_zero_of_row_eq

(i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 :=

det_row_multilinear.map_eq_zero_of_eq M hij i_ne_j

Listing 11.1.: Refactoring matrix.det to use alternatization

The old code is on the left, and the new code on the right. While the new definition
is frankly inscrutable, the power of formal languages is that we can prove to the reader
that it is defined correctly (det_apply). The new definition makes the long proof of
det_zero_of_row_eq (and many other results) evaporate.

where shuffle(m,n) consists of all permutations of [1,m + n] such that σ(1) < · · · < σ(m) and
σ(m+ 1) < · · · < σ(m+ n); but this assumes that the indices of the maps are Fin m and Fin n.
The Lean formalization in [mathlib#5269] states things more generally, replacing these with
arbitrary (finite) indexing types ιa and ιb.

33

def dom_coprod

(a : alternating_map R' Mᵢ N₁ ιa) (b : alternating_map R' Mᵢ N₂ ιb) :

alternating_map R' Mᵢ (N₁ ⊗[R'] N₂) (ιa ⊕ ιb) :=

Instead of using the < relation to define shuffle, which is not available on our indices, the
formalization works with the type of permutations of ιa ⊕ ιb, under the quotient by the relation
“differs only by permutations within ιa and ιb”. This dom_coprod operation is interesting because
it satisfies the following:

33

lemma multilinear_map.dom_coprod_alternization

(a : multilinear_map R' (λ _ : ιa, Mᵢ) N₁)

(b : multilinear_map R' (λ _ : ιb, Mᵢ) N₂) :

(a.dom_coprod b).alternatization =

a.alternatization.dom_coprod b.alternatization :=

where the first dom_coprod is the map v 7→ a(v1, . . . , vn)⊗ b(vn+1, . . . , vn+m).

11.1.2. Further links with the exterior algebra

As a final remark about alternating maps, [mathlib#14803] constructs the isomorphism

166

Chapter 11. Further formalizations

33

def lift_alternating_equiv :

(Π i, alternating_map R M N (fin i)) ≃ₗ[R] (exterior_algebra R M →ₗ[R] N) :=

sorry

which reads2 “Choosing an i-argument alternating map for every i : N is equivalent to choosing
a linear map from the exterior algebra”. The interpretation is reasonable; we can build a map
from the exterior algebra by specifying how the map operates on the blades. As a result, the
construction of the reverse map is straightforward.

The construction of the forward map leverages some of the tricks from chapter 8. Writing
Alt(M i, N) to stand in for alternating_map R M N (fin i), we build the map via an auxiliary
construction exploiting the algebra structure of endomorphisms:

lift_altaux :
∧

(M)→ ((i : N)→ Alt(M i, N))→ ((i : N)→ Alt(M i, N)) (11.2)

lift_altaux(m : M) := f 7→ i 7→ fi+1(m, . . .) (11.2a)

Here, fi+1(m, . . .) is the i-argument alternating map formed by fixing the first argument of fi to
m. Effectively, our recursion is applying our functions fi one grade at a time, and putting the
“final result” in f0; each time we encounter a new vector, we throw out this result (it wasn’t final
after all!) and remove one argument from all our functions. This informs us how to extract the
operator we want:

lift_alt[f] : ((i : N)→ Alt(M i, N))→
∧

(M)→ N (11.3)

lift_alt[f] := f 7→ x 7→ g0() where g := lift_altaux(x, f), (11.3a)

where the () on g0 represents the operation of applying a zero-argument alternating map, exploiting
the fact that Alt(M0, N) and N are isomorphic. For eq. (11.2a) to be well-formed, the universal
property of the exterior algebra requires that when (f 7→ i 7→ fi+1(m, . . .)) is applied to itself
with the same m, all the maps vanish. This can be seen easily; applying it twice produces a term
of the form fi+2(m,m, . . .), and alternating maps vanish when two of their arguments are equal.

Of course, when M is n-dimensional, we need only pick the maps where i ≤ n; but formalizing
results about Clifford or exterior algebras that only hold over finite-dimensional modules is a
project in itself.

11.2. Exponential operators
One of the author’s original goals of formalizing Clifford algebras was to be able to formalize results
about the multivector exponential operator (shown briefly in table 2.4), which in applications [63,
§2.3; 5, eq. (2.120); 1, §7.4.3] typically appears when turning bivectors into rotors to perform

2The Π in this syntax is indicating a dependent function; each element of the family of alternating maps is of a
different arity.

167

Chapter 11. Further formalizations

geometric transformations. The exp operator on multivectors can be defined in much the same
way as it is for R and C, via a power series expansion [68, Chapter I, eq. (2.6)],

exp(x) =
∞∑

n=0

1

n!
xn. (11.4)

In formalization, we don’t just want to define it the “same way”, because then we have to
rewrite all the proofs in the “same way” as well. Instead, we want a single definition of exp that
works for as many cases as possible. A candidate for this is the exponential of Banach algebras,
introduced by Anatole Dedecker in [mathlib#8576] as

33

variables (𝕂 𝔸 : Type*) [nondiscrete_normed_field 𝕂] [normed_ring 𝔸] [normed_algebra 𝕂 𝔸]

/-- In a Banach algebra `𝔸` over a normed field `𝕂`, `exp 𝕂 𝔸 : 𝔸 → 𝔸` is the exponential map

determined by the action of `𝕂` on `𝔸`. -/

def exp (x : 𝔸) : 𝔸 :=

This definition has two main problems.
The first is that it takes a surprising 𝕂 argument, which specifies the field in which to compute

the fractions 1
n! from eq. (11.4). Mathematically this is effectively redundant, as provided we

limit ourselves to [char_zero 𝕂] (without which the exponential is not well-defined anyway),
we can safely pick 𝕂 := ℚ. However, it turns out to sometimes be convenient in formalization,
as lemmas about exp often require a richer choice of field over which 𝔸 is an algebra, such as
𝕂 := ℝ or 𝕂 := ℂ; by putting this choice of field in the definition of exp, the lemmas can locate
it automatically rather than asking the user to choose each time. In the author’s opinion this
convenience isn’t worth the surprise of having an explicit 𝕂 in theorem statements, but attempts
to remove the argument in [mathlib#19244] and [mathlib4#8370] proved awkward.

At any rate, it is the second problem that is particularly obstructive towards the goal of
exponentiating multivectors; namely the [normed_ring 𝔸] argument. This not only says that
𝔸 must have a submultiplicative norm (‖AB‖ ≤ ‖A‖‖B‖, which is a reasonable condition to
ensure convergence), but by virtue of the data-carrying definition of normed_ring and the use of
[] around the argument indicating it should be found by typeclass search, also says that the
norm ought to be canonical. Even if we fight this canonicity requirement, to Lean each choice
of norm defines a new exp function; that is @exp 𝕂 𝔸 _ norm1 _ and @exp 𝕂 𝔸 _ norm2 _ are a
priori unrelated functions.

The fact that we need a norm at all in Lean to define eq. (11.4) should be considered suspect;
mathlib can write down infinite sums (of convergent sequences) using tsum, which for eq. (11.4)
results in ∑' n : ℕ, (n !⁻¹ : ℚ) • x ^ n. To make proofs easier, [mathlib#8576] chose not to
use this definition, but to use a more complex definition that leverages existing theory about
formal multilinear series. Thankfully, by refactoring formal multilinear series in [mathlib#13444;
mathlib#13426], it was possible to keep these easier proofs while taking on only the weaker
typeclass requirements needed by tsum.

The end result, after some further simplification in [mathlib#13987], was

168

Chapter 11. Further formalizations

33

variables (𝕂 : Type*) {𝔸 : Type*}

variables [field 𝕂] [ring 𝔸] [algebra 𝕂 𝔸] [topological_space 𝔸] [topological_ring 𝔸]

/-- `exp 𝕂 : 𝔸 → 𝔸` is the exponential map determined by the action of `𝕂` on `𝔸`. -/

def exp (x : 𝔸) : 𝔸 :=

which needs only a suitable topology on the ring 𝔸 (one where addition, multiplication, and
negation3 are continuous). Note that the conditions here are not strong enough to ensure
convergence, but that is fine for the same reason that in Lean, the division operator does not
require its divisor to be non-zero [37]; those conditions are left to the theorems about exp.

Rather than proceeding by defining a canonical topology on the multivectors, which the author
struggled to find much literature on, we will instead look at some simpler cases, starting with
exponents of matrices4.

11.2.1. Matrices

Matrices (of finite dimension) have a natural canonical topology, equal to the product or box
topology which are one and the same. As a result, the changes to exp above mean that we can
write exp 𝕂 M for a square matrix M and Lean is happy.

However, we run into trouble when we try to apply a theorem about exp, for instance

33

theorem exp_add_of_commute

{𝕂 𝔸 : Type*} [is_R_or_C 𝕂] [normed_ring 𝔸] [normed_algebra 𝕂 𝔸] [complete_space 𝔸]

{x y : 𝔸} (hxy : commute x y) :

exp 𝕂 (x + y) = exp 𝕂 x * exp 𝕂 y

with 𝔸 := matrix n n 𝕂, as the requirement for a canonical submultiplicative norm on matrices
resurfaces.

Ignoring the issue of canonicity for a moment, we clearly still need a formalization of some
matrix norm to make progress. The easiest norm to formalize is the element-wise infinity norm,

‖M‖ = mini,j ‖Mi,j‖, (11.5)

which was added in [mathlib#9379] simply by copying across the norm inherited from product
types (whose elements are themselves product types). However, this norm is insufficient for our
use-case, as it is not submultiplicative.

A somewhat more useful norm is the Frobenius norm,

‖M‖F =

√∑
i,j

‖Mi,j‖2, (11.6)

added in [mathlib#13497]. This too follows easily by copying an existing norm structure; the

3Strictly not mathematically necessary here.
4Which happens to be one of the targets of the project to formalize an undergraduate mathematics degree in

mathlib.

169

Chapter 11. Further formalizations

`2 norm (of the sequence of rows, each of which is itself viewed under the `2 norm). Unlike
eq. (11.5), eq. (11.6) is submultiplicative, via Cauchy–Schwarz. In practice, this means that we
are restricted to the case when the entries Mi,j lie in R or C, as most of the results we need to
prove this are stated in the generality of is_R_or_C.

The last norm we should consider is the `∞ norm,

‖M‖∞ = supi

∑
j

‖Mij‖

 , (11.7)

added in [mathlib#13518]. For the third time in a row, we are in luck; we can build this norm
by taking the `∞ norm of the sequence of rows, each equipped with the `1 norm. This norm
is also submultiplicative; but turns out to be so much more generally than eq. (11.6), as this
time the entries Mi,j can lie in any normed algebra over a field. This means that it remains valid
for matrices of quaternions! Under stronger assumptions on these entries [mathlib4#9476] this
coincides with the operator norm, ‖M‖∞ = sup‖x‖∞=1(‖Mx‖∞).

While both eq. (11.6) and eq. (11.7) are submultiplicative and therefore satisfy normed_ring, we
also need them to satisfy normed_algebra. It was discovered that the definition of normed_algebra
in mathlib did not permit eq. (11.6) and eq. (11.7) in the special case of 0× 0 matrices, due to an
erroneous axiom that implied ‖1‖ = 1. This was removed in [mathlib#13544], and replaced with
the axioms ‖rx‖ ≤ ‖r‖‖x‖; the definition became the simpler “a normed algebra is a normed ring
that is also a normed module”.

While the infinity norm in eq. (11.7) is certainly the most convenient for us, this isn’t sufficient
evidence that it is canonical, which would make it the norm that every mathlib user gets
automatically. If it were canonical, then we would already be done; users of exp on matrices could
directly use exp_add_of_commute.

The fact it is not simply means that we have to duplicate the API:

33

variable {𝕂 m 𝔸 : Type*}

variable [is_R_or_C 𝕂] [fintype m] [decidable_eq m] [normed_ring 𝔸] [normed_algebra 𝕂 𝔸] [complete_

space 𝔸]↪→

lemma matrix.exp_add_of_commute (A B : matrix m m 𝔸) (h : commute A B) :

exp 𝕂 (A + B) = exp 𝕂 A ⬝ exp 𝕂 B :=

begin

letI : semi_normed_ring (matrix m m 𝔸) := matrix.linfty_op_semi_normed_ring,

letI : normed_ring (matrix m m 𝔸) := matrix.linfty_op_normed_ring,

letI : normed_algebra 𝕂 (matrix m m 𝔸) := matrix.linfty_op_normed_algebra,

exact exp_add_of_commute h,

end

Note here that while we do assume a canonical norm on the elements of the matrices 𝔸, we

170

Chapter 11. Further formalizations

do not do so for the matrix itself5. Inside the proof, we use the letI tactic to locally pretend
that the declarations about eq. (11.7) are instances; globally, they are just defs and would not
therefore not be found in typeclass search. Under this pretence, the exp_add_of_commute lemma
that previously eluded us is happy to apply.

Overall, this work [mathlib#13520] (and its dependencies [mathlib#13402; mathlib#13444;
mathlib#13488; mathlib#13489; mathlib#13518; mathlib#13534; mathlib#13641; mathlib#13815;
mathlib#13918; mathlib#13938; mathlib#13970; mathlib#13971]) contributed the following facts
about the matrix exponential to mathlib (which in turn improved the state in fig. 3.9 of formalizing
[38]):

exp(0) = 1 (11.8)

exp(A+B) = exp(A) exp(B), when A and B commute (11.9)

exp(nA) = exp(A)n, when n : N or n : Z (11.10)

exp(−A) = exp(A)−1 (11.11)

exp(UDU−1) = U exp(D)U−1 (11.12)

A exp(B) = exp(B)A, when A and B commute (11.13)

exp

([
A1

. . .
An

])
=

[exp(A1)

. . .
exp(An)

]
, where Ai are either scalars or matrices (11.14)

exp(AH) = exp(A)H (11.15)

exp(AT) = exp(A)T (11.16)

Prior to the author’s work, only the first two already existed, for general Banach algebras. Except
for the last two which only makes sense on matrices, the remainder were contributed in general
cases first, then creating duplicates specialized to matrices. This duplication is still not ideal,
but duplicating every lemma about exp for matrices is still much better than duplicating every
lemma for every possible norm on matrices!

Having practiced on the matrices in section 11.2.1, we can take a small step closer to Clifford al-
gebras by looking at exponentials of dual numbers (section 10.1.3) and quaternions (section 10.1.4),
which are at least isomorphic to special cases of Clifford algebras.

11.2.2. Dual numbers

For the dual numbers—or more generally, the trivial square-zero extension tsze[R,M] that we
saw in section 10.1.5—the exponential function is trivial so long as R is commutative; we have
exp(r +m) = exp(r) + exp(r)m (and so exp(ε) = 1 + ε). The proof follows by expanding the

5This still isn’t an ideal situation, as we are still faced with an issue when working with matrices themselves have
no canonical choice of norm. A possibly better approach would be to have something like a submultiplicative_

normable typeclass in mathlib, which would state that the topology can be obtained from a suitable norm,
without prescribing which norm is used. This solution entails a fair amount of boilerplate, and the scenario it
solves is not one the author needed; so the author has not attempted it.

171

Chapter 11. Further formalizations

power series, and noting that when R is commutative6, (r +m)n = rn + nmrn−1 (formalized in
[mathlib#18199], along with other basic algebraic results). Formalizing the result about exp
takes a little more work; we first need to set up the topological space structure on tsze[R,M]

(copied from the product topology on its components), and prove a large number of obvious
results about continuity of the constructor, projections, and algebraic operators.

Once these are in place, we can prove exp(r +m) = exp(r) + exp(r)m. We start by proving
results about elements of the power series; we do so separately for the R and M pieces as the latter
needs stronger assumptions. Before we can state the theorems, we will need a fairly monstrous
set of typeclass assumptions

44

variable [Field 𝕜] [CharZero 𝕜] [Ring R] [AddCommGroup M]

[Algebra 𝕜 R] [Module 𝕜 M] [Module R M] [Module Rᵐᵒᵖ M]

[SMulCommClass R Rᵐᵒᵖ M] [IsScalarTower 𝕜 R M] [IsScalarTower 𝕜 Rᵐᵒᵖ M]

[TopologicalSpace R] [TopologicalSpace M]

[TopologicalRing R] [TopologicalAddGroup M] [ContinuousSMul R M] [ContinuousSMul Rᵐᵒᵖ M]

In summary: we have an additive group M which is a left- and right- R-module as well as a
𝕜-module, with all the actions being maximally compatible. The next two lines assure us that
all these operations are continuous. As a compromise between the easy commutative case and
hard non-commutative case (that we earlier dismissed to a footnote), we prove the result for the
special case of the non-commutative case where the particular r and m commute, rm = mr, as
specified by the hx assumption below:

44

@[simp] theorem fst_expSeries (x : tsze R M) (n : ℕ) :

(expSeries 𝕜 (tsze R M) n fun _ => x).fst = expSeries 𝕜 R n fun _ => x.fst := by

simp [expSeries_apply_eq]

theorem snd_expSeries_of_smul_comm

(x : tsze R M) (hx : MulOpposite.op x.fst • x.snd = x.fst • x.snd) (n : ℕ) :

(expSeries 𝕜 (tsze R M) (n + 1) fun _ => x).snd = (expSeries 𝕜 R n fun _ => x.fst) • x.snd

sorry -- this one is boring, but more slightly work

Here, x.fst and x.snd refer to the r and m pieces of r +m.
Working with the R part of the series is easy, as we can see that the R part of the nth term of

exp(r +m) is the nth term of exp(r). For the M part we need to do slightly more work, as the
indices of the terms have shifted by one; we need to state that the sums of the series agree

44

theorem hasSum_snd_expSeries_of_smul_comm (x : tsze R M)

(hx : MulOpposite.op x.fst • x.snd = x.fst • x.snd) {e : R}

(h : HasSum (fun n => expSeries 𝕜 R n fun _ => x.fst) e) :

HasSum (fun n => snd (expSeries 𝕜 (tsze R M) n fun _ => x)) (e • x.snd)

The HasSum f a definition in mathlib can be rather confusing at first glance; it doesn’t mean “the

6When R is not commutative, we have (r +m)n+1 = rn+1 +
∑n

i=0 r
n−imri. In Lean, the summand is written

r ^ (n - i) • op (r ^ i) • m, once again using the infrastructure in section 4.7, this time to perform the scaling
on both sides of m. A similar result holds for exp; that exp(r + m) = exp(r) +

∫ 1
0 exp(tr)m exp((1 − t)r)dt.

The author found this somewhat awkward to formalize via the usual analysis proofs [mathlib#19056], but the
combinatorial proof [mathlib4#9487] from [85, §2.1] might be more approachable.

172

Chapter 11. Further formalizations

sum of f is a”, but rather7 “the sum of f converges to the neighborhood of a”. This design lets
us simultaneously prove both that a series converges and what it converges to. Here, we resolve
difficulties around whether exp(r +m) converges by ensuring exp(r) converges. We can combine
our results for the R part and the M part as

44

/-- If `exp R x.fst` converges to `e` then `exp R x` converges to `inl e + inr (e • x.snd)`. -/

theorem hasSum_expSeries_of_smul_comm

(x : tsze R M) (hx : MulOpposite.op x.fst • x.snd = x.fst • x.snd)

{e : R} (h : HasSum (fun n => expSeries 𝕜 R n fun _ => x.fst) e) :

HasSum (fun n => expSeries 𝕜 (tsze R M) n fun _ => x) (inl e + inr (e • x.snd)) := by

have : HasSum (fun n => fst (expSeries 𝕜 (tsze R M) n fun _ => x)) e := by

simpa [fst_expSeries] using h

simpa only [inl_fst_add_inr_snd_eq] using

(hasSum_inl _ <| this).add (hasSum_inr _ <| hasSum_snd_expSeries_of_smul_comm 𝕜 x hx h)

where inl r + inr m is the formal way we write r +m.
To write useful lemmas about exp 𝕜 x, it would be reasonable to assume we need to know

that the series converges for a given x. One option would be to promoting our topological spaces
to complete normed Hausdorff (t2_space) spaces over the real or complex numbers (and indeed
this is what [mathlib#18200] did). However, we can exploit the “junk value” design (described
in [37]) here; if the series does not converge at x, then we define exp 𝕜 x = 0. This is perfect
for our use case, because we can case-split on whether exp(r) converges: if it does, then we
have exp(r + m) = exp(r) + exp(r)m via our results above; if it doesn’t, then we know via
fst_expSeries that exp(r+m) must also not converge, and so our equation becomes 0 = 0+ 0m

which is still true!
These results were originally contributed in [mathlib#18200], then revised in [mathlib#19049]

for (partial) non-commutativity considerations, and again in [mathlib4#9491] to exploit the use
of “junk values”.

Unlike in section 11.2.1, we have not yet provided any norm structure on the dual numbers;
and so the exp_add_of_commute lemma remains out of our grasp. The canonical “norm” on the
dual numbers appears to be ‖a+ bε‖ = ‖a‖ [86, pg. 292], but this norm has two major flaws that
prevent our use of it. The first is that this is not a true norm, but only a seminorm (as there are
non-zero elements like ε with norm zero); this means that they induce a non-Hausdorff topology,
and our exponential series does not converge to a single value8! The second is that the topology
induced by this seminorm is not equal to the product topology, which is the topology we provided
all the theorems for in [mathlib#18200]. A better candidate for a norm is ‖r +m‖ = ‖r‖+ ‖m‖,
which is submultiplicative, and agrees with the product topology [mathlib4#9492]; though it is
hard to say whether it is the most canonical9.

7These two notions agree in Hausdorff spaces, written in our case as [T2Space R] [T2Space M].
8Indeed, only the real part converges.
9Jireh Loreaux proposed the C? norm in https://leanprover.zulipchat.com/#narrow/stream/116395-maths/topic

/Exponentials.20in.20seminormed.20algebras/near/321870256, in the context of the unitization; a very similar
construction to the dual numbers.

173

https://leanprover.zulipchat.com/#narrow/stream/116395-maths/topic/Exponentials.20in.20seminormed.20algebras/near/321870256
https://leanprover.zulipchat.com/#narrow/stream/116395-maths/topic/Exponentials.20in.20seminormed.20algebras/near/321870256

Chapter 11. Further formalizations

11.2.3. Quaternions

For the quaternions, we are in for a treat; mathlib has long-known [mathlib#2339] that they form
a normed algebra10 (with the norm defined by ‖w + xi + yi + zi‖ =

√
w2 + x2 + y2 + z2). As a

result, exp ℝ q works out of the box for a quaternion q : ℍ[ℝ].
The result that we wish to show can be stated in Lean as

44

/-- The closed form for the quaternion exponential on arbitrary quaternions. -/

theorem exp_eq (q : ℍ[ℝ]) :

exp ℝ q = exp ℝ q.re • (↑(cos ‖q.im‖) + (sin ‖q.im‖ / ‖q.im‖) • q.im)

where q.im is q - q.re, i.e. the pure-imaginary part of the quaternion. The proof is a standard
on (so we shall not spend much space on it here), and proceeds by considering the exponential of
pure-imaginary quaternions (eliminating the exp ℝ q.re term), then collecting alternate terms
into terms of the series for cos and sin. Formalizing this hit the slight snag that mathlib did
not know what these series were, but with some help from the community this was resolved in
[mathlib#18352]. The result above, along with various other corollaries like ‖ exp(q)‖ = exp(<(q))
and <(exp(q)) = exp(<(q)) cos(‖=(q)‖), were contributed in [mathlib#18349]; which in turn
required the many basic algebraic results about quaternions in [mathlib#18413].

11.3. Summary
Section 11.1 presented a brief summary of the definition of alternating maps in mathlib, and a
handful of useful constructions related to them. Notably, it provided another application for the
insight gained in chapter 8 regarding universal properties and recursive algorithms. The work
here is already being built upon by other contributors; Yury Kudryashov added a definition of
continuous alternating maps in [mathlib4#5678], and has indicated that the work in section 11.1.1
will be essential to defining products of differential forms.

Section 11.2 outlined the process of ironing out some of the difficulties in working with exp in
mathlib, and demonstrated how to apply it to the quaternions and the dual numbers. Further
work could go on to formalize the results about dual quaternions in [87], and to finish the author’s
attempt in [mathlib4#9487] to formalize the results for non-commutative dual numbers from [85,
§2.1].

The issue of canonicity of norms that section 11.2 runs into is one that extends beyond
exponential operators; mathlib has the same problem for derivatives, and thus cannot talk about
“the” derivative of a matrix (or multivector) function without first specifying a canonical norm.
Derivatives are rather more developed in mathlib than exponential operators, and so this is a
much thornier issue to resolve; but one that the community is already working on [88].

Of course, the underlying motivation for section 11.2 was the multivector exponential; which
hinges upon putting at least a topology, if not also a norm, on the Clifford algebra. For now, this

10Though the author had to upgrade this to complete normed algebra [mathlib#18347], i.e. a Banach algebra.

174

Chapter 11. Further formalizations

is almost certainly out of reach for mathlib, which is lacking such constructions even on the much
more elementary tensor product.

There is a common thread between 11.1 and section 11.2, one which weaves through much of
the rest of this thesis; the benefit of the collaborative nature of mathlib. Work by one contributor,
even when falling short of its original goal, can be stored, maintained, and indexed as part of
mathlib, such that it is at any point immediately ready for a new contributor to discover and
resume. These small formalizations add up over time, sometimes quickly: the author had multiple
experiences where a partial result he contributed one week was asked for by another user the
following week.

175

12
Conclusions

If I have not seen as far as others, it is because there
were giants standing on my shoulders.

(Hal Abelson)

12.1. Key contributions
• Improvements across mathlib’s Matrix library, in an effort to improve parity with The

Matrix Cookbook. The most visible contribution here is the new !![a, b; c, d] notation
for matrices. While not of any use elsewhere in this thesis, this part of mathlib may well be
of pedagogical value for new Lean users.

• Significant developments to mathlib’s theory of scalar actions, resulting in mathlib gaining
non-associative algebra and bimodules, in chapter 4. It also provides an in-depth exploration
of typeclass diamonds with examples, supplementing the work in [45] and [44].

• Considerable expansions to the scope of the pre-existing ext tactic used in mathlib, along
with illumination of the chaining mechanism, in chapter 5.

• A formalization of graded rings that is the first of its kind in any theorem prover, in
chapter 6; and a demonstration that it is fit for purpose with multiple examples. This
chapter is also responsible for the SetLike typeclass in mathlib, which set the stage for
many future refactors to algebraic structures.

• A better understanding of the typeclass issues that plagued mathlib during the port from
Lean 3 to Lean 4, in chapter 7. The learnings are relevant for theorem provers beyond Lean,
though other systems have been fortunate enough to sidestep the issues by coincidence.

• A mental framework for working with universal properties through the lens of functional
programming, culminating in the development of a basis-free universal property for the
even subalgebra of the Clifford algebra, G+(V,Q), in chapter 8.

176

Chapter 12. Conclusions

• A very general formalization of Clifford algebras (matching Bourbaki) that now resides in
mathlib, from chapter 9.

• A broad selection of formalized connections between Clifford algebras and other mathemat-
ical objects, in chapter 10. This represented significant contributions to mathlib’s linear
algebra library, including to the trivial square zero extension over non-commutative rings,
the tensor products of quadratic forms, and the tensor product of graded rings.

• Various smaller contributions to mathlib, for which chapter 11 presents a few examples:

– A formalization of alternating maps, which will be essential in future developments of
differential forms. Already, this has provided simplifications in the library around
matrix determinants.

– Improvements to the definition of the exp operator, and a library of lemmas around it
specific to matrices, dual numbers, and quaternions. As part of this, a small selection
of matrix norms were added to mathlib.

– Over 2000 total contributions1 to the Lean 3 and Lean 4 versions of mathlib, of
which only a small minority are directly referenced by this thesis. The author
was additionally involved in review of over 5000 contributions from other mathlib
contributors.

12.2. Follow-up work
Much of the work in this thesis has been contributed to mathlib on the fly; and so the work of
other contributors is already building upon it. This section lists a selection of examples that the
author is aware of.

• Sophie Morel has been developing a theory of Grassmannians at https://github.com/smo

rel394/ExteriorPowers, building upon the author’s work on AlternatingMap (section 11.1)
and ExteriorAlgebra. This work is already starting to enter mathlib in [mathlib4#9718].

• Jujian Zhang, who co-authored the paper from which chapter 6 is adapted, has further
developed the “Proj construction” in [89], which builds heavily upon the author’s work on
graded rings.

• Jireh Loreaux has expanded mathlib’s library of matrix norms described in section 11.2.1,
adding the `2 norm in [mathlib4#9474].

• Ali Ramsey and Kevin Buzzard, through their work on formalizing Hopf algebras [math-
lib4#10079], have at the author’s suggestion been leveraging much of the ext infrastructure
(especially on tensor products) set up in chapter 5.

1Readers who are logged into GitHub can, at the time of writing, see the full list through this
search for is:pr author:eric-wieser repo:leanprover-community/mathlib repo:leanprover-community/mathlib4

"merged by bors" created:<=2024-02-22.

177

https://github.com/smorel394/ExteriorPowers
https://github.com/smorel394/ExteriorPowers
https://github.com/pulls?q=is%3Apr+author%3Aeric-wieser+repo%3Aleanprover-community%2Fmathlib+repo%3Aleanprover-community%2Fmathlib4+%22merged+by+bors%22+created%3A%3C%3D2024-02-22
https://github.com/pulls?q=is%3Apr+author%3Aeric-wieser+repo%3Aleanprover-community%2Fmathlib+repo%3Aleanprover-community%2Fmathlib4+%22merged+by+bors%22+created%3A%3C%3D2024-02-22
https://github.com/pulls?q=is%3Apr+author%3Aeric-wieser+repo%3Aleanprover-community%2Fmathlib+repo%3Aleanprover-community%2Fmathlib4+%22merged+by+bors%22+created%3A%3C%3D2024-02-22

Chapter 12. Conclusions

• Anne Baanen adopted the author’s SetLike and early ideas about a corresponding FunLike

into a major refactor of algebraic structures throughout mathlib, as described in [45, §6.3].

12.3. Future directions

12.3.1. Further changes to scalar actions

Chapter 4 leaves two main directions for further work; a more flexible system for having multiple
actions on a type without ambiguity (perhaps using the strategy outlined in section 4.9), and
further proliferating support for right actions throughout mathlib (involving the heavy refactor
discussed in section 4.7.2 and [mathlib#7152]).

12.3.2. Further development of graded algebraic objects

While chapter 6 develops the theory of graded rings and algebras in mathlib, it does not develop
the theory of graded morphisms between these structures. Constructions such as the one in
section 10.3 are in fact isomorphisms of graded algebras, which preserve the grade when applied
to homogeneous elements.

In the presence of such new theory, we would still need to show that the graded tensor product
is itself a graded algebra, before we can strengthen theorem 10.25 into a morphism of graded
algebras.

12.3.3. Further comparison between flat and nested structures

Chapter 7 extensively explores a functionality issue with nested structures that provided a major
obstacle to the conversion of mathlib from Lean 3 to Lean 4. The obstacle is now fixed, and
everything is working correctly with nested structures.

While nested structures are often useful, it is not clear to the author that they always the
preferred tool for the job. There are two aspects in which nested structures may still be suboptimal:

API surface Nested inheritance can result in an asymmetric interface to structures. Consider for
instance this reduced example that defines morphisms of rings:

44

structure MonoidHom [Monoid A] [Monoid B] where

toFun : A → B

map_mul (a b : A) : toFun (a * b) = toFun (a * b)

structure AddMonoidHom [AddMonoid A] [AddMonoid B] where

toFun : A → B

map_add (a b : A) : toFun (a + b) = toFun (a + b)

structure RingHom [Ring A] [Ring B] extends MonoidHom A B, AddMonoidHom A B

178

Chapter 12. Conclusions

Morally, RingHom is a function toFun and two proof fields map_mul and map_add; and indeed
for flat inheritance this is exactly the behavior.

For nested structures, the type of constructor mk shows that symmetry between add and
mul has been broken:

44
#check RingHom.mk

-- RingHom.mk (toMonoidHom : MonoidHom A B) (map_add : _) : RingHom A B

This is hidden from the user when using named field notation such as { toFun := _, map_

add := _, map_mul := _ }, but as it is present in the underlying term, it can affect the
behavior of tactics like simp. Symmetry is again broken if we inspect the toFun field,

44

variable [Ring A] [Ring B] (f : RingHom A B)

#check f.toFun -- f.toFun

#check f.toMonoidHom.toFun -- f.toFun

#check f.toAddMonoidHom.toFun -- (RingHom.toAddMonoidHom f).toFun

where we see that the printer and elaborator have special behavior to pretend that f

.toMonoidHom.toFun is just f.toFun; but the pretense is asymmetric and doesn’t apply
when viewing the function additively.

Ultimately these symmetry concerns are minor, and the quirks they caused did not obstruct
the port from Lean 3 to Lean 4; but in the cases where nested structures are not offering
performance benefits, a minor improvement is still an improvement.

Performance One of the main arguments for nested inheritance is that it improves performance:
the “preferred” parents have special handling, and the projections to those parents are
in some sense “cheaper” operations than projections to other parents, as there is no
reconstruction to perform. This is a great optimization for structures with exactly one
parent, or even for structures where one parent is clearly more important than another.

Unfortunately, this is far from the way that mathlib’s typeclasses are currently structured;
for instance, CommRing could justifiably have all of Ring, CommSemiring, NonUnitalCommRing,
NonAssocCommRing as parents, and things get even worse if normed rings are thrown into
the mix. This puts mathlib in the awkward position where it has to decide that one
mathematical concept is more important than another; only one of these typeclasses can be
the “preferred” parent, and experimentation from other contributors seems to suggest that
many choices make significant performance trade-offs between formalizations in different
branches of mathematics.

In [lean4#2451], Matthew Ballard identified that even in the case of preferred parents, it
was easy for users to fall into a nasty performance trap relating to η-expansion; the fix in
[lean4#2478] led to significant performance improvements, at the expense of further loss of
symmetry between parents.

In [lean4#2940], the author has a prototype that introduces extends flat syntax, to avoid
needing the workaround in section 7.4.2. This can be used to experiment with the effects on flat

179

Chapter 12. Conclusions

inheritance on performance and API surface, the results of which would provide arguments for or
against the author’s proposal to make flat structures a bona fide language feature in [lean4#2666].

12.3.4. Syntactic support for universal properties

In chapter 8, in many places a notation halfway between mathematics and code was used, for
example in eq. (8.23) which is reproduced below.

lift+aux[f] : G(V,Q)→ (A⊕ S)→ (A⊕ S)

lift+aux[f](v : V) := (a, s) 7→ (s(v), w 7→ f(w, v)a),

In principle, it would be possible to translate this directly to Lean notation.
This work was done before Lean 4 and its version of mathlib were ready, and Lean 3 had very

little to offer in the direction of custom notation2. Now that Lean 4 underpins all of mathlib, it
would be possible to explore encoding the above spelling more directly.

Tomáš Skřivan has already made some progress in this direction with the fun x =>L[ℝ] k * x

notation in [90], which is a step towards being able to write (a, s) 7→ (s(v), w 7→ f(w, v)a) and
have Lean automatically prove its linearity. In theory, this could be combined with a syntax
parser with awareness of universal properties, to form something like the following

44

-- this is not currently valid syntax!

def lift_aux (f : V →ₗ[R] V →ₗ[R] A) :

CliffordAlgebra Q →ₗ[R] (A × S) →ₗ[R] (A × S)

| .ι v ↦ fun (a, s) ↦ₗ[R] (s v, fun w ↦ₗ[R] f w v * a)

ι_sq_scalar => by

sorry

where the sorry is a placeholder for the proof from eq. (8.26). This is certainly closer to eq. (8.23)
than the point-free spellings that this thesis has been corralled towards, though further thought
would be required to come up with a general (but not too surprising) notation that works for all
the universal properties in this thesis.

12.3.5. Formalizing further elementary results about Clifford algebras

A key result that is missing from the formalizations in this thesis is that the Clifford algebra of
a free module is itself a free module. To the author, the obvious way to prove this result is to
construct an explicit model for the Clifford algebra; the very approach from section 2.1 that we
avoided!

A simplified version of this (for the exterior algebra) was prototyped, under the author’s
tutoring, by three attendees at LftCM 2023. The version of this adapted for the Clifford algebra
might start as follows

2The !![a, b; c, d] notation added in [mathlib#14991] by the author was one of only three user_notations in
mathlib; the other two were for string formatting.

180

Chapter 12. Conclusions

44

variable {ι R : Type*} [LinearOrder ι] [CommRing R]

/-- Indices of our basis elements -/

abbrev Model.Index : Type _ := {l : List ι // l.Sorted (· < ·) }

/-- The model for a Clifford algebra over the free module `ι →₀ R`,

with `B` describing the scalar product of the basis vectors. -/

def Model (B : ι → ι → R) : Type _ := Model.Index ι →₀ R

which defines Model ι B as the free module over the appropriate basis elements. This definition
is more general than the one discussed in section 9.2.3, as it does not require that the basis be
orthogonal with respect to the quadratic form, nor does it require that the index of the basis ι

be finite. The key challenge here is implementing the multiplicative structure, with statement
Ring (Model ι B), which the non-orthogonal basis complicates.

The universal property follows much more simply; at which point we can use the approach
from section 8.2.2 to construct an isomorphism between Model ι B and CliffordAlgebra QB for
a suitable QB : QuadraticForm R (ι →₀ R) derived from B. This is all we need to show that
CliffordAlgebra (Q : QuadraticForm R V is free whenever V is, as free-ness of V gives us the
isomorphism between V and ι →₀ R.

A simple consequence would be to show that the Clifford algebra is finite-dimensional when its
vector space is; a prerequisite for constructing the “pseudoscalar” I =

∏
i ei that literature on

geometric algebra makes heavy reference to, as the product is nonsensical without a proof that
there are finitely many basis vectors.

12.3.6. Improvements to mathlib’s calculus library

One of the author’s original hopes was to be able to formalize parts of “geometric calculus” from
[14]. As discussed in section 11.3, there are currently issues with the definition of derivatives in
mathlib that make them challenging to apply to matrices, let alone multivectors; so this goal was
not within reach. Another missing piece is integration of differential forms.

12.4. Summary
Despite on the surface being about Clifford algebras, this thesis explored a deep slice of the
reality of formalizing mathematics: exploring foundational type theoretic concerns, addressing
challenges in elementary algebra, constructing complex yet composable algebraic objects, and
adapting written mathematics to exploit the behavior of the theorem proving system. While the
formalizations are all in Lean and mathlib, many of the lessons learned are transferrable to other
systems, and could inspire design decisions in systems which are yet to be built. With any luck,
formalized mathematics is here to stay.

181

References

[1] Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Algebra for Computer Science:
An Object-Oriented Approach to Geometry. Morgan Kaufmann Series in Computer Graphics.
Amsterdam : San Francisco: Elsevier ; Morgan Kaufmann, 2007. 626 pp. isbn: 978-0-12-
374942-0 (cit. on pp. iv, 100, 125, 132, 167).

[2] Eric Wieser and Jujian Zhang. “Graded Rings in Lean’s Dependent Type Theory”. In:
Intelligent Computer Mathematics. CICM 2023. Ed. by Kevin Buzzard and Temur Kutsia.
Vol. 13467. Lecture Notes in Computer Science. Cham: Springer International Publishing,
2022, pp. 122–137. isbn: 978-3-031-16680-8 978-3-031-16681-5. doi: 10.1007/978-3-031-
16681-5_8 (cit. on pp. iv, 3, 63).

[3] Eric Wieser. “Multiple-Inheritance Hazards in Dependently-Typed Algebraic Hierarchies”.
In: Intelligent Computer Mathematics. CICM 2023. Ed. by Catherine Dubois and Manfred
Kerber. Vol. 14101. Lecture Notes in Computer Science. Cham: Springer, July 21, 2023,
pp. 222–236. isbn: 978-3-031-42753-4. doi: 10 . 1007 / 978 - 3 - 031 - 42753 - 4 _ 15. arXiv:
2306.00617 [cs.LO] (cit. on pp. iv, 3, 79, 90).

[4] Eric Wieser and Joan Lasenby. “Computing with the Universal Properties of the Clifford
Algebra and the Even Subalgebra”. In: Advanced Computational Applications of Geometric
Algebra. ICACGA 2023. Ed. by David W. Silva, Eckhard Hitzer, and Dietmar Hildenbrand.
Vol. 13771. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2024,
pp. 199–211. isbn: 978-3-031-34031-4. doi: 10.1007/978-3-031-34031-4_17 (cit. on pp. v, 3,
95).

[5] Chris Doran and Anthony Lasenby. Geometric Algebra for Physicists. Cambridge: Cambridge
University Press, 2003. isbn: 978-0-511-80749-7. doi: 10.1017/CBO9780511807497. url: http:
//ebooks.cambridge.org/ref/id/CBO9780511807497 (visited on 10/09/2019) (cit. on pp. 1,
132, 167).

[6] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von
Raumer. “The Lean Theorem Prover (System Description)”. In: Automated Deduction -
CADE-25. CADE 2015. Ed. by Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2015, pp. 378–388.
isbn: 978-3-319-21400-9 978-3-319-21401-6. doi: 10.1007/978-3-319-21401-6_26 (cit. on
pp. 1, 66, 80).

182

https://doi.org/10.1007/978-3-031-16681-5_8
https://doi.org/10.1007/978-3-031-16681-5_8
https://doi.org/10.1007/978-3-031-42753-4_15
https://arxiv.org/abs/2306.00617
https://doi.org/10.1007/978-3-031-34031-4_17
https://doi.org/10.1017/CBO9780511807497
http://ebooks.cambridge.org/ref/id/CBO9780511807497
http://ebooks.cambridge.org/ref/id/CBO9780511807497
https://doi.org/10.1007/978-3-319-21401-6_26

References

[7] Leonardo de Moura and Sebastian Ullrich. “The Lean 4 Theorem Prover and Programming
Language”. In: Automated Deduction – CADE 28. CADE 2021. Ed. by André Platzer
and Geoff Sutcliffe. Vol. 12699. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2021, pp. 625–635. isbn: 978-3-030-79875-8 978-3-030-79876-5.
doi: 10.1007/978-3-030-79876-5_37 (cit. on pp. 1, 80).

[8] Kevin Hartnett. “Proof Assistant Makes Jump to Big-League Math”. In: Quanta Magazine
(July 28, 2021). url: https://www.quantamagazine.org/lean-computer-program-confirms-
peter-scholze-proof-20210728/ (visited on 02/19/2024) (cit. on p. 2).

[9] Leila Sloman. “‘A-Team’ of Math Proves a Critical Link Between Addition and Sets”. In:
Quanta Magazine (Dec. 6, 2023). url: https://www.quantamagazine.org/a-team-of-math-
proves-a-critical-link-between-addition-and-sets-20231206/ (visited on 02/19/2024)
(cit. on p. 2).

[10] Eric Wieser and Utensil Song. “Formalizing Geometric Algebra in Lean”. In: Advances
in Applied Clifford Algebras 32.3 (July 2022), p. 28. issn: 0188-7009, 1661-4909. doi:
10.1007/s00006-021-01164-1. arXiv: 2306.00617 [cs.LO]. url: https://link.springer.
com/10.1007/s00006-021-01164-1 (visited on 04/23/2022) (cit. on pp. 3, 25, 77, 109, 110,
121, 123, 133).

[11] Eric Wieser. “Scalar Actions in Lean’s Mathlib”. In: Workshop Papers of the 14th Conference
on Intelligent Computer Mathematics. CICM 2021. Vol. 3377. Timisoara, Romania: CEUR-
WS, Aug. 10, 2021. arXiv: 2108.10700 [cs.LO] (cit. on pp. 3, 36).

[12] Eric Wieser. “Chaining extensionality lemmas in Lean’s Mathlib”. In: CICM 2024. Lecture
Notes in Computer Science. in review (cit. on pp. 3, 55).

[13] Eric Wieser and Joan Lasenby. “Computing with the Universal Properties of the Clifford
Algebra and the Even Subalgebra”. In: Advances in Applied Clifford Algebras (in review)
(cit. on pp. 3, 95, 96).

[14] David Hestenes and Garret Sobczyk. Clifford Algebra to Geometric Calculus: A Uni-
fied Language for Mathematics and Physics. Fundamental Theories of Physics. Springer
Netherlands, 1984. isbn: 978-90-277-1673-6. doi: 10.1007/978-94-009-6292-7. url:
https://www.springer.com/gp/book/9789027716736 (visited on 05/04/2020) (cit. on pp. 7,
21, 101, 107, 132, 181).

[15] Bertfried Fauser and Rafał Abłamowicz. “On the Decomposition of Clifford Algebras of
Arbitrary Bilinear Form”. In: Clifford Algebras and Their Applications in Mathematical
Physics. 5th International Conference on Clifford Algebras and Their Applications in
Mathematical Physics. Ed. by Rafał Abłamowicz and Bertfried Fauser. Vol. 18. Progress in
Physics. Boston, MA: Birkhäuser Boston, 2000, pp. 341–366. isbn: 978-1-4612-1368-0. doi:
10.1007/978-1-4612-1368-0_18 (cit. on pp. 13, 127).

183

https://doi.org/10.1007/978-3-030-79876-5_37
https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/
https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/
https://www.quantamagazine.org/a-team-of-math-proves-a-critical-link-between-addition-and-sets-20231206/
https://www.quantamagazine.org/a-team-of-math-proves-a-critical-link-between-addition-and-sets-20231206/
https://doi.org/10.1007/s00006-021-01164-1
https://arxiv.org/abs/2306.00617
https://link.springer.com/10.1007/s00006-021-01164-1
https://link.springer.com/10.1007/s00006-021-01164-1
https://arxiv.org/abs/2108.10700
https://doi.org/10.1007/978-94-009-6292-7
https://www.springer.com/gp/book/9789027716736
https://doi.org/10.1007/978-1-4612-1368-0_18

References

[16] Nicolas Bourbaki. Algèbre, Chapitre 9. Réimpression inchangée de l’éd. originale. Eléments
de mathématique 2. Berlin: Springer, 2007. isbn: 978-3-540-35338-6 (cit. on pp. 13, 114).

[17] Zur Izhakian, Manfred Knebusch, and Louis Rowen. “Supertropical Quadratic Forms I”.
In: Journal of Pure and Applied Algebra 220.1 (Jan. 2016), pp. 61–93. issn: 00224049.
doi: 10.1016/j.jpaa.2015.05.043. url: https://linkinghub.elsevier.com/retrieve/pii/
S0022404915001589 (visited on 01/17/2024) (cit. on p. 13).

[18] Richard James Wareham. “Computer Graphics Using Conformal Geometric Algebra”.
University of Cambridge, Nov. 2006. url: https://rjw57.github.io/phd-thesis/rjw-

thesis.pdf (cit. on p. 16).

[19] Pablo Colapinto. “Versor: Spatial Computing with Conformal Geometric Algebra”. MA
thesis. University of California at Santa Barbara, 2011. url: http://versor.mat.ucsb.edu
(cit. on pp. 16, 17).

[20] D. H. F. Dijkman. “Efficient Implementation of Geometric Algebra”. Universiteit van
Amsterdam, Oct. 2007. url: https://dare.uva.nl/search?identifier=627c5dcb-1b7d-

4501-ba81-8c5a97db2749 (visited on 01/18/2024) (cit. on p. 16).

[21] Stéphane Breuils, Vincent Nozick, and Laurent Fuchs. “Garamon: A Geometric Algebra
Library Generator”. In: Advances in Applied Clifford Algebras 29.4 (Sept. 2019), p. 69. issn:
0188-7009, 1661-4909. doi: 10.1007/s00006-019-0987-7. url: http://link.springer.com/
10.1007/s00006-019-0987-7 (visited on 08/12/2020) (cit. on pp. 17, 18, 112).

[22] Steven De Keninck. Ganja.Js. Zenodo, 2020. doi: 10.5281/ZENODO.3635774. url: https:
//zenodo.org/record/3635774 (cit. on p. 17).

[23] Christian Schwinn, Dietmar Hildenbrand, Florian Stock, and Andreas Koch. “Gaalop 2.0 -
A Geometric Algebra Algorithm Compiler”. In: 2010 (cit. on pp. 17, 21).

[24] Leandro Augusto Frata Fernandes. GATL: Geometric Algebra Template Library. url:
https://github.com/laffernandes/gatl (cit. on p. 17).

[25] Jeremy Ong. GAL. 2019. url: https://github.com/jeremyong/gal (cit. on p. 17).

[26] Alex Arsenovic, Hugo Hadfield, Eric Wieser, Robert Kern, and The Pygae Team. Py-
gae/Clifford: V1.3.1. Version v1.3.1. Zenodo, June 3, 2020. doi: 10.5281/ZENODO.1453978.
url: https://zenodo.org/record/1453978 (visited on 06/23/2020) (cit. on p. 17).

[27] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J.
Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett,
Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. “Array Programming with NumPy”. June 17, 2020. arXiv:
2006.10256 [cs, stat]. url: http://arxiv.org/abs/2006.10256 (visited on 06/23/2020)
(cit. on pp. 18, 36, 44).

184

https://doi.org/10.1016/j.jpaa.2015.05.043
https://linkinghub.elsevier.com/retrieve/pii/S0022404915001589
https://linkinghub.elsevier.com/retrieve/pii/S0022404915001589
https://rjw57.github.io/phd-thesis/rjw-thesis.pdf
https://rjw57.github.io/phd-thesis/rjw-thesis.pdf
http://versor.mat.ucsb.edu
https://dare.uva.nl/search?identifier=627c5dcb-1b7d-4501-ba81-8c5a97db2749
https://dare.uva.nl/search?identifier=627c5dcb-1b7d-4501-ba81-8c5a97db2749
https://doi.org/10.1007/s00006-019-0987-7
http://link.springer.com/10.1007/s00006-019-0987-7
http://link.springer.com/10.1007/s00006-019-0987-7
https://doi.org/10.5281/ZENODO.3635774
https://zenodo.org/record/3635774
https://zenodo.org/record/3635774
https://github.com/laffernandes/gatl
https://github.com/jeremyong/gal
https://doi.org/10.5281/ZENODO.1453978
https://zenodo.org/record/1453978
https://arxiv.org/abs/2006.10256
http://arxiv.org/abs/2006.10256

References

[28] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A LLVM-based Python JIT
Compiler”. In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in
HPC - LLVM ’15. The Second Workshop. Austin, Texas: ACM Press, 2015, pp. 1–6. isbn:
978-1-4503-4005-2. doi: 10.1145/2833157.2833162. url: http://dl.acm.org/citation.cfm?
doid=2833157.2833162 (visited on 08/13/2020) (cit. on p. 18).

[29] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kirpichev,
Matthew Rocklin, AmiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina
Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh
Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R.
Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman,
and Anthony Scopatz. “SymPy: Symbolic Computing in Python”. In: PeerJ Computer
Science 3 (Jan. 2, 2017), e103. issn: 2376-5992. doi: 10.7717/peerj-cs.103. url: https:
//peerj.com/articles/cs-103 (visited on 06/23/2020) (cit. on p. 21).

[30] Alan Bromborsky, Utensil Song, Eric Wieser, Hugo Hadfield, and The Pygae Team. Py-
gae/Galgebra: V0.5.0. Version v0.5.0. Zenodo, June 4, 2020. doi: 10.5281/ZENODO.3857096.
url: https://zenodo.org/record/3857096 (visited on 06/23/2020) (cit. on p. 21).

[31] Robin Lloyd and CNN Interactive Senior Writer. “Metric Mishap Caused Loss of NASA
Orbiter”. In: CNN Interactive (1999), p. 11 (cit. on p. 24).

[32] Stanislas Polu and Ilya Sutskever. Generative Language Modeling for Automated Theorem
Proving. Sept. 7, 2020. arXiv: 2009.03393 [cs.LG]. preprint (cit. on p. 26).

[33] Sean Welleck and Rahul Saha. LLMSTEP: LLM Proofstep Suggestions in Lean. Oct. 27,
2023. arXiv: 2310.18457 [cs.AI]. preprint (cit. on p. 26).

[34] Lawrence C. Paulson and Jasmin Christian Blanchette. “Three Years of Experience with
Sledgehammer, a Practical Link between Automatic and Interactive Theorem Provers”.
In: The 8th International Workshop on the Implementation of Logics. IWIL 2010. Ed. by
Geoff Sutcliffe, Stephan Schulz, and Eugenia Ternovska. Vol. 2. EPiC Series in Computing.
EasyChair, 2012, pp. 1–11. doi: 10.29007/36dt. url: https://easychair.org/publications/
paper/wV (cit. on p. 26).

[35] Jannis Limperg and Asta Halkjær From. “Aesop: White-Box Best-First Proof Search for
Lean”. In: Proceedings of the 12th ACM SIGPLAN International Conference on Certified
Programs and Proofs. CPP 2023. Boston MA USA: ACM, Jan. 11, 2023, pp. 253–266. isbn:
9798400700262. doi: 10.1145/3573105.3575671 (cit. on p. 26).

[36] Learning Lean. url: https://leanprover-community.github.io/learn.htm (visited on
03/09/2021) (cit. on p. 26).

[37] Kevin Buzzard. Division by Zero in Type Theory: A FAQ. Xena. June 5, 2020. url: https:
//xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-faq/

(cit. on pp. 29, 169, 173).

185

https://doi.org/10.1145/2833157.2833162
http://dl.acm.org/citation.cfm?doid=2833157.2833162
http://dl.acm.org/citation.cfm?doid=2833157.2833162
https://doi.org/10.7717/peerj-cs.103
https://peerj.com/articles/cs-103
https://peerj.com/articles/cs-103
https://doi.org/10.5281/ZENODO.3857096
https://zenodo.org/record/3857096
https://arxiv.org/abs/2009.03393
https://arxiv.org/abs/2310.18457
https://doi.org/10.29007/36dt
https://easychair.org/publications/paper/wV
https://easychair.org/publications/paper/wV
https://doi.org/10.1145/3573105.3575671
https://leanprover-community.github.io/learn.htm
https://xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-faq/
https://xenaproject.wordpress.com/2020/07/05/division-by-zero-in-type-theory-a-faq/

References

[38] Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cookbook. Nov. 15,
2012. url: https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf (visited on
01/14/2024) (cit. on pp. 29, 30, 171, 176).

[39] The mathlib Community. “The Lean Mathematical Library”. In: Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and Proofs. POPL ’20:
47th Annual ACM SIGPLAN Symposium on Principles of Programming Languages. New
Orleans LA USA: ACM, Jan. 20, 2020, pp. 367–381. isbn: 978-1-4503-7097-4. doi: 10.

1145/3372885.3373824. url: https://dl.acm.org/doi/10.1145/3372885.3373824 (visited
on 08/21/2020) (cit. on pp. 31–33, 37, 45, 66, 80).

[40] Mathlib Statistics. url: https://leanprover-community.github.io/mathlib_stats.html

(visited on 01/17/2021) (cit. on p. 31).

[41] Undergrad Math in Mathlib. url: https://leanprover-community.github.io/undergrad.
html (visited on 03/03/2021) (cit. on p. 31).

[42] Floris van Doorn, Gabriel Ebner, and Robert Y. Lewis. “Maintaining a Library of Formal
Mathematics”. In: Intelligent Computer Mathematics. CICM 2020. Ed. by Christoph
Benzmüller and Bruce Miller. Vol. 12236. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2020, pp. 251–267. isbn: 978-3-030-53517-9 978-3-030-
53518-6. doi: 10.1007/978-3-030-53518-6_16. arXiv: 2004.03673 [cs.PL]. url: http:

//link.springer.com/10.1007/978-3-030-53518-6_16 (visited on 03/03/2021) (cit. on
p. 31).

[43] Anne Baanen, Sander R. Dahmen, Ashvni Narayanan, and Filippo A. E. Nuccio Mortarino
Majno Di Capriglio. “A Formalization of Dedekind Domains and Class Groups of Global
Fields”. In: Journal of Automated Reasoning 66.4 (Nov. 2022), pp. 611–637. issn: 0168-7433,
1573-0670. doi: 10.1007/s10817-022-09644-0. url: https://link.springer.com/10.1007/
s10817-022-09644-0 (visited on 12/14/2023) (cit. on p. 42).

[44] Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien Rouhling, and
Kazuhiko Sakaguchi. “Competing Inheritance Paths in Dependent Type Theory: A Case
Study in Functional Analysis”. In: Automated Reasoning. IJCAR 2020. Ed. by Nicolas
Peltier and Viorica Sofronie-Stokkermans. Vol. 12167. Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2020, pp. 3–20. isbn: 978-3-030-51053-4 978-3-
030-51054-1. doi: 10.1007/978-3-030-51054-1_1 (cit. on pp. 45, 70, 86, 176).

[45] Anne Baanen. “Use and Abuse of Instance Parameters in the Lean Mathematical Library”.
In: ITP 2022. Haifa, Israel, May 2, 2022. arXiv: 2202.01629 [cs.LO] (cit. on pp. 45, 67, 73,
75, 80, 82, 85, 87, 92, 176, 178).

[46] Nicolas Bourbaki. Algebra I, Chapters 1-3. Elements of Mathematics. Berlin Heidelberg:
Springer, 1989. 708 pp. isbn: 978-3-540-64243-5 (cit. on pp. 64, 65, 157, 161).

186

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://dl.acm.org/doi/10.1145/3372885.3373824
https://leanprover-community.github.io/mathlib_stats.html
https://leanprover-community.github.io/undergrad.html
https://leanprover-community.github.io/undergrad.html
https://doi.org/10.1007/978-3-030-53518-6_16
https://arxiv.org/abs/2004.03673
http://link.springer.com/10.1007/978-3-030-53518-6_16
http://link.springer.com/10.1007/978-3-030-53518-6_16
https://doi.org/10.1007/s10817-022-09644-0
https://link.springer.com/10.1007/s10817-022-09644-0
https://link.springer.com/10.1007/s10817-022-09644-0
https://doi.org/10.1007/978-3-030-51054-1_1
https://arxiv.org/abs/2202.01629

References

[47] The Stacks project authors. The Stacks Project. 2022. url: https://stacks.math.columbia.
edu (cit. on p. 65).

[48] Davide Castelvecchi. “Mathematicians Welcome Computer-Assisted Proof in ‘Grand Unifica-
tion’ Theory”. In: Nature 595.7865 (July 1, 2021), pp. 18–19. issn: 0028-0836, 1476-4687. doi:
10.1038/d41586-021-01627-2. url: http://www.nature.com/articles/d41586-021-01627-2
(visited on 07/24/2022) (cit. on p. 65).

[49] César Domínguez and Julio Rubio. “Effective Homology of Bicomplexes, Formalized in
Coq”. In: Theoretical Computer Science 412.11 (Mar. 2011), pp. 962–970. issn: 03043975.
doi: 10.1016/j.tcs.2010.11.016. url: https://linkinghub.elsevier.com/retrieve/pii/
S0304397510006493 (visited on 05/27/2022) (cit. on p. 66).

[50] Jeremy Avigad, Steve Awodey, Ulrik Buchholtz, Floris van Doorn, Clive Newstead, Egbert
Rijke, and Mike Shulman. Spectral Sequences in Homotopy Type Theory. Nov. 2015. url:
https://github.com/cmu-phil/Spectral (cit. on p. 66).

[51] Guillaume Brunerie, Axel Ljungström, and Anders Mörtberg. “Synthetic Integral Cohomol-
ogy in Cubical Agda”. In: 30th EACSL Annual Conference on Computer Science Logic (CSL
2022). Ed. by Florin Manea and Alex Simpson. Vol. 216. Leibniz International Proceedings
in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, 2022, 11:1–11:19. isbn: 978-3-95977-218-1. doi: 10.4230/LIPIcs.CSL.2022.11. url:
https://drops.dagstuhl.de/opus/volltexte/2022/15731 (cit. on p. 66).

[52] Reid Barton, Johan Commelin, Kevin Buzzard, Kenny Lau, and Mario Carneiro. #maths
> CDGAs. Lean Zulip Chat. June 11, 2019. url: https://leanprover-community.github.
io/archive/stream/116395-maths/topic/CDGAs.html (cit. on pp. 66, 68).

[53] Jacques Carette, William M. Farmer, and Yasmine Sharoda. “Leveraging the Information
Contained in Theory Presentations”. In: Intelligent Computer Mathematics. CICM 2020.
Ed. by Christoph Benzmüller and Bruce Miller. Vol. 12236. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2020, pp. 55–70. isbn: 978-3-030-53517-9
978-3-030-53518-6. doi: 10.1007/978-3-030-53518-6_4 (cit. on pp. 80, 92).

[54] Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. “Hierarchy Builder: Algebraic Hierar-
chies Made Easy in Coq with Elpi (System Description)”. In: 5th International Conference
on Formal Structures for Computation and Deduction (FSCD 2020). Ed. by Zena M. Ariola.
Vol. 167. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 34:1–34:21. isbn: 978-3-95977-155-
9. doi: 10.4230/LIPIcs.FSCD.2020.34. url: https://drops.dagstuhl.de/opus/volltexte/
2020/12356 (cit. on pp. 88, 91, 92).

[55] Andreas Abel. “On Extensions to Definitional Equality in Agda”. 10th Agda Implementors’
Meeting (Gothenburg, Sweden). Sept. 15, 2009. url: https://www.cse.chalmers.se/

~abela/talkAIM09.pdf (cit. on pp. 88, 92).

187

https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://doi.org/10.1038/d41586-021-01627-2
http://www.nature.com/articles/d41586-021-01627-2
https://doi.org/10.1016/j.tcs.2010.11.016
https://linkinghub.elsevier.com/retrieve/pii/S0304397510006493
https://linkinghub.elsevier.com/retrieve/pii/S0304397510006493
https://github.com/cmu-phil/Spectral
https://doi.org/10.4230/LIPIcs.CSL.2022.11
https://drops.dagstuhl.de/opus/volltexte/2022/15731
https://leanprover-community.github.io/archive/stream/116395-maths/topic/CDGAs.html
https://leanprover-community.github.io/archive/stream/116395-maths/topic/CDGAs.html
https://doi.org/10.1007/978-3-030-53518-6_4
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://drops.dagstuhl.de/opus/volltexte/2020/12356
https://drops.dagstuhl.de/opus/volltexte/2020/12356
https://www.cse.chalmers.se/~abela/talkAIM09.pdf
https://www.cse.chalmers.se/~abela/talkAIM09.pdf

References

[56] Sébastien Gouëzel. #mathlib4 > Some Observations on Eta Experiment. Lean Zulip
Chat. May 3, 2023. url: https://leanprover.zulipchat.com/#narrow/stream/287929-

mathlib4/topic/Some.20observations.20on.20eta.20experiment/near/355336941 (cit. on
p. 90).

[57] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence Rideau. “Packaging
Mathematical Structures”. In: Theorem Proving in Higher Order Logics. TPHOLs 2009.
Ed. by Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel. Vol. 5674.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 327–342. isbn: 978-3-642-03358-2 978-3-642-03359-9. doi: 10.1007/978-3-642-03359-
9_23 (cit. on p. 91).

[58] Bas Spitters and Eelis Van Der Weegen. “Type Classes for Mathematics in Type Theory”.
In: Mathematical Structures in Computer Science 21.4 (Aug. 2011), pp. 795–825. issn: 0960-
1295, 1469-8072. doi: 10.1017/S0960129511000119. url: https://www.cambridge.org/core/
product/identifier/S0960129511000119/type/journal_article (visited on 06/12/2023)
(cit. on pp. 91, 92).

[59] Assia Mahboubi and Enrico Tassi. Mathematical Components. Zenodo, Sept. 28, 2022. url:
https://zenodo.org/record/7118596 (visited on 06/03/2023) (cit. on p. 91).

[60] Kazuhiko Sakaguchi. “Validating Mathematical Structures”. In: Automated Reasoning.
IJCAR 2020. Ed. by Nicolas Peltier and Viorica Sofronie-Stokkermans. Vol. 12167. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2020, pp. 138–157.
isbn: 978-3-030-51053-4 978-3-030-51054-1. doi: 10.1007/978-3-030-51054-1_8 (cit. on
p. 92).

[61] Clemens Ballarin. “Exploring the Structure of an Algebra Text with Locales”. In: Journal
of Automated Reasoning 64.6 (Aug. 2020), pp. 1093–1121. issn: 0168-7433, 1573-0670. doi:
10.1007/s10817-019-09537-9. url: http://link.springer.com/10.1007/s10817-019-09537-
9 (visited on 06/19/2023) (cit. on p. 92).

[62] Erik Poll and Simon Thompson. “Integrating Computer Algebra and Reasoning through the
Type System of Aldor”. In: Frontiers of Combining Systems. Ed. by Hélène Kirchner and
Christophe Ringeissen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 136–150.
isbn: 978-3-540-46421-1 (cit. on p. 92).

[63] Anthony Lasenby, Joan Lasenby, and Richard Wareham. A Covariant Approach to Geom-
etry Using Geometric Algebra. F-INFENG/TR-483. Department of Engineering, Uni-
versity of Cambridge, 2004, p. 90. url: https : / / pdfs . semanticscholar . org / baba /

976fd7f6577eeaa1d3ef488c1db13ec24652.pdf (cit. on pp. 95, 167).

[64] Pertti Lounesto. Clifford Algebras and Spinors. 2nd ed. Vol. 286. London Mathematical
Society Lecture Note Series. Cambridge University Press, 2001. isbn: 978-0-511-52602-2.
doi: 10.1017/CBO9780511526022 (cit. on pp. 97, 98).

188

https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Some.20observations.20on.20eta.20experiment/near/355336941
https://leanprover.zulipchat.com/#narrow/stream/287929-mathlib4/topic/Some.20observations.20on.20eta.20experiment/near/355336941
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1017/S0960129511000119
https://www.cambridge.org/core/product/identifier/S0960129511000119/type/journal_article
https://www.cambridge.org/core/product/identifier/S0960129511000119/type/journal_article
https://zenodo.org/record/7118596
https://doi.org/10.1007/978-3-030-51054-1_8
https://doi.org/10.1007/s10817-019-09537-9
http://link.springer.com/10.1007/s10817-019-09537-9
http://link.springer.com/10.1007/s10817-019-09537-9
https://pdfs.semanticscholar.org/baba/976fd7f6577eeaa1d3ef488c1db13ec24652.pdf
https://pdfs.semanticscholar.org/baba/976fd7f6577eeaa1d3ef488c1db13ec24652.pdf
https://doi.org/10.1017/CBO9780511526022

References

[65] Claude C. Chevalley. The Algebraic Theory of Spinors. Columbia University Press, 1954.
isbn: 978-0-231-89180-6. doi: 10.7312/chev93056. url: https://www.degruyter.com/

document/doi/10.7312/chev93056/html (visited on 08/09/2022) (cit. on pp. 97, 98).

[66] M G Mahmoudi. “Orthogonal Symmetries and Clifford Algebras”. In: Proceedings - Math-
ematical Sciences 120.5 (2010), pp. 535–561. issn: 0973-7685. doi: 10.1007/s12044-010-
0050-z. arXiv: 1006.0997 [math.RA] (cit. on p. 101).

[67] Ian R. Porteous. Clifford Algebras and the Classical Groups. 1st ed. Cambridge University
Press, Oct. 5, 1995. isbn: 978-0-521-55177-9 978-0-511-47091-2 978-0-521-11802-6. doi:
10.1017/CBO9780511470912. url: https://www.cambridge.org/core/product/identifier/
9780511470912/type/book (visited on 02/21/2023) (cit. on pp. 104, 106).

[68] H.B. Lawson and M.L. Michelsohn. Spin Geometry (PMS-38), Volume 38. Princeton
Mathematical Series. Princeton University Press, 1989. isbn: 978-0-691-08542-5. url:
https://books.google.co.uk/books?id=3d9JkN8w3X8C (cit. on pp. 105, 155, 161, 162, 168).

[69] Rafał Abłamowicz and Pertti Lounesto. “On Clifford Algebras of a Bilinear Form with
an Antisymmetric Part”. In: Clifford Algebras with Numeric and Symbolic Computations.
Ed. by Rafał Abłamowicz, Josep M. Parra, and Pertti Lounesto. Boston, MA: Birkhäuser
Boston, 1996, pp. 167–188. isbn: 978-1-4615-8159-8 978-1-4615-8157-4. doi: 10.1007/978-1-
4615-8157-4_11. url: http://link.springer.com/10.1007/978-1-4615-8157-4_11 (visited
on 01/11/2024) (cit. on p. 107).

[70] Darij Grinberg. “The Clifford Algebra and the Chevalley Map- a Computational Approach
(Summary Version 1)”. June 2016. url: http://mit.edu/~darij/www/algebra/chevalleys.
pdf (cit. on pp. 107, 108, 121, 164).

[71] Darij Grinberg. Answer to ”Clifford PBW Theorem for Quadratic Form”. MathOverflow.
Feb. 9, 2012. url: https://mathoverflow.net/a/87958/172242 (visited on 01/12/2024)
(cit. on pp. 110, 129–131).

[72] Tetsuo Ida, Jacques Fleuriot, and Fadoua Ghourabi. “A New Formalization of Origami
in Geometric Algebra”. In: Proceedings of ADG 2016. Eleventh International Workshop
on Automated Deduction in Geometry. Strasbourg, France, June 2016, pp. 117–136. url:
https://hal.inria.fr/hal-01334334 (cit. on pp. 111, 112, 162).

[73] Laurent Fuchs and Laurent Thery. “A Formalization of Grassmann-Cayley Algebra in
COQ and Its Application to Theorem Proving in Projective Geometry”. In: Automated
Deduction in Geometry, ADG 2010. Ed. by Julien Narboux Pascal Schreck and Jürgen
Richter-Gebert. Vol. 6877. Lecture Notes in Computer Science. Munich, Germany: Springer,
July 2010, pp. 51–62. doi: 10.1007/978-3-642-25070-5_3. url: https://hal.archives-
ouvertes.fr/hal-00657901 (cit. on p. 112).

189

https://doi.org/10.7312/chev93056
https://www.degruyter.com/document/doi/10.7312/chev93056/html
https://www.degruyter.com/document/doi/10.7312/chev93056/html
https://doi.org/10.1007/s12044-010-0050-z
https://doi.org/10.1007/s12044-010-0050-z
https://arxiv.org/abs/1006.0997
https://doi.org/10.1017/CBO9780511470912
https://www.cambridge.org/core/product/identifier/9780511470912/type/book
https://www.cambridge.org/core/product/identifier/9780511470912/type/book
https://books.google.co.uk/books?id=3d9JkN8w3X8C
https://doi.org/10.1007/978-1-4615-8157-4_11
https://doi.org/10.1007/978-1-4615-8157-4_11
http://link.springer.com/10.1007/978-1-4615-8157-4_11
http://mit.edu/~darij/www/algebra/chevalleys.pdf
http://mit.edu/~darij/www/algebra/chevalleys.pdf
https://mathoverflow.net/a/87958/172242
https://hal.inria.fr/hal-01334334
https://doi.org/10.1007/978-3-642-25070-5_3
https://hal.archives-ouvertes.fr/hal-00657901
https://hal.archives-ouvertes.fr/hal-00657901

References

[74] Laurent Fuchs and Laurent Théry. “Implementing Geometric Algebra Products with Binary
Trees”. In: Advances in Applied Clifford Algebras 24.2 (June 2014), pp. 589–611. issn:
0188-7009, 1661-4909. doi: 10.1007/s00006-014-0447-3. url: https://hal.inria.fr/hal-
01095495 (cit. on pp. 113, 162).

[75] Li-Ming Li, Zhi-Ping Shi, Yong Guan, Qian-Ying Zhang, and Yong-Dong Li. “Formalization
of Geometric Algebra in HOL Light”. In: Journal of Automated Reasoning 63.3 (Oct.
2019), pp. 787–808. issn: 0168-7433, 1573-0670. doi: 10.1007/s10817-018-9498-9. url:
http://link.springer.com/10.1007/s10817-018-9498-9 (visited on 08/21/2020) (cit. on
pp. 113, 137, 162).

[76] Eric Wieser, Reid Barton, and Kevin Buzzard. #new Members > Induction on a Submonoid.
Lean Zulip Chat. Nov. 9, 2020. url: https://leanprover.zulipchat.com/#narrow/stream/
113489-new-members/topic/Induction.20on.20a.20submonoid/near/216369226 (cit. on
p. 124).

[77] David Hestenes. New Foundations for Classical Mechanics. Kluwer Academic Publishers,
1999. isbn: 978-0-7923-5302-7. url: http://geocalc.clas.asu.edu/html/NFCM.html (cit. on
p. 132).

[78] Dan Piponi. “Automatic Differentiation, C++ Templates, and Photogrammetry”. In: Journal
of Graphics Tools 9 (Jan. 1, 2004). doi: 10.1080/10867651.2004.10504901 (cit. on p. 135).

[79] Heather Macbeth. “Using Polyrith”. In: Computations in Lean. July 10, 2022. url: https:
//hrmacbeth.github.io/computations_in_lean/02_Using_Polyrith.html#double-cover-of-

so-3 (cit. on p. 136).

[80] José Figueroa-O’Farrill. Spin Geometry. May 18, 2017. url: https://empg.maths.ed.ac.
uk/Activities/Spin/SpinNotes.pdf (cit. on pp. 142, 155).

[81] Antoine Chambert-Loir. #Is There Code for X? > Base Change for Bilinear Maps and
Quadratic Forms. Lean Zulip Chat. July 14, 2023. url: https://leanprover.zulipchat.com/
#narrow/stream/217875-Is-there-code-for-X.3F/topic/Base.20change.20for.20bilinear.

20maps.20and.20quadratic.20forms/near/375126978 (cit. on p. 142).

[82] Christian Kassel. “Tensor Products”. In: Quantum Groups. Vol. 155. New York, NY: Springer
New York, 1995, pp. 23–38. isbn: 978-1-4612-6900-7 978-1-4612-0783-2. doi: 10.1007/978-
1-4612-0783-2_2. url: http://link.springer.com/10.1007/978-1-4612-0783-2_2 (visited
on 09/28/2023) (cit. on p. 150).

[83] Reynald Affeldt and Cyril Cohen. “Formal Foundations of 3D Geometry to Model Robot
Manipulators”. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs
and Proofs. CPP 2017. Paris France: ACM, Jan. 16, 2017, pp. 30–42. isbn: 978-1-4503-4705-
1. doi: 10.1145/3018610.3018629. url: https://inria.hal.science/hal-01414753 (cit. on
p. 163).

190

https://doi.org/10.1007/s00006-014-0447-3
https://hal.inria.fr/hal-01095495
https://hal.inria.fr/hal-01095495
https://doi.org/10.1007/s10817-018-9498-9
http://link.springer.com/10.1007/s10817-018-9498-9
https://leanprover.zulipchat.com/#narrow/stream/113489-new-members/topic/Induction.20on.20a.20submonoid/near/216369226
https://leanprover.zulipchat.com/#narrow/stream/113489-new-members/topic/Induction.20on.20a.20submonoid/near/216369226
http://geocalc.clas.asu.edu/html/NFCM.html
https://doi.org/10.1080/10867651.2004.10504901
https://hrmacbeth.github.io/computations_in_lean/02_Using_Polyrith.html#double-cover-of-so-3
https://hrmacbeth.github.io/computations_in_lean/02_Using_Polyrith.html#double-cover-of-so-3
https://hrmacbeth.github.io/computations_in_lean/02_Using_Polyrith.html#double-cover-of-so-3
https://empg.maths.ed.ac.uk/Activities/Spin/SpinNotes.pdf
https://empg.maths.ed.ac.uk/Activities/Spin/SpinNotes.pdf
https://leanprover.zulipchat.com/#narrow/stream/217875-Is-there-code-for-X.3F/topic/Base.20change.20for.20bilinear.20maps.20and.20quadratic.20forms/near/375126978
https://leanprover.zulipchat.com/#narrow/stream/217875-Is-there-code-for-X.3F/topic/Base.20change.20for.20bilinear.20maps.20and.20quadratic.20forms/near/375126978
https://leanprover.zulipchat.com/#narrow/stream/217875-Is-there-code-for-X.3F/topic/Base.20change.20for.20bilinear.20maps.20and.20quadratic.20forms/near/375126978
https://doi.org/10.1007/978-1-4612-0783-2_2
https://doi.org/10.1007/978-1-4612-0783-2_2
http://link.springer.com/10.1007/978-1-4612-0783-2_2
https://doi.org/10.1145/3018610.3018629
https://inria.hal.science/hal-01414753

References

[84] Jean Gallier. Notes on Differential Geometry and Lie Groups. Department of Computer
and Information Science, University of Pennsylvania, June 20, 2011. url: https://www.cis.
upenn.edu/~cis6100/diffgeom-n.pdf (cit. on p. 165).

[85] Ravinder Rupchand Puri. “Algebra of the Exponential Operator”. In: Mathematical Methods
of Quantum Optics. Red. by William T. Rhodes. Vol. 79. Springer Series in Optical Sciences.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 37–53. isbn: 978-3-642-08732-5
978-3-540-44953-9. doi: 10.1007/978-3-540-44953-9_2. url: http://link.springer.com/
10.1007/978-3-540-44953-9_2 (visited on 01/06/2024) (cit. on pp. 172, 174).

[86] V. Majerník. “Basic Space-Time Transformations Expressed by Means of Two-Component
Number Systems”. In: Acta Physica Polonica A 86.3 (Sept. 1994), pp. 291–295. issn: 0587-
4246, 1898-794X. doi: 10.12693/APhysPolA.86.291. url: http://przyrbwn.icm.edu.pl/
APP/PDF/86/a086z3p01.pdf (visited on 01/25/2024) (cit. on p. 173).

[87] J. M. Selig. “Exponential and Cayley Maps for Dual Quaternions”. In: Advances in Applied
Clifford Algebras 20.3 (3 Oct. 1, 2010), pp. 923–936. issn: 1661-4909. doi: 10.1007/s00006-
010-0229-5. url: https://link.springer.com/article/10.1007/s00006-010-0229-5

(visited on 02/11/2024) (cit. on p. 174).

[88] Yury Kudryashov and Anatole Dedecker. #maths > Generalizing Deriv to TVS. Lean Zulip
Chat. May 18, 2023. url: https://leanprover.zulipchat.com/#narrow/stream/116395-

maths/topic/generalizing.20deriv.20to.20TVS/near/359284921 (cit. on p. 174).

[89] Jujian Zhang. “Formalising the Proj Construction in Lean”. In: 14th International Conference
on Interactive Theorem Proving. ITP 2023. Ed. by Adam Naumowicz and René Thiemann.
Vol. 268. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 35:1–35:17. isbn: 978-3-95977-
284-6. doi: 10.4230/LIPIcs.ITP.2023.35. url: https://drops.dagstuhl.de/entities/

document/10.4230/LIPIcs.ITP.2023.35 (cit. on p. 177).

[90] Tomáš Skřivan. Lecopivo/SciLean: Scientific Computing in Lean 4. url: https://github.
com/lecopivo/SciLean (visited on 02/18/2024) (cit. on p. 180).

191

https://www.cis.upenn.edu/~cis6100/diffgeom-n.pdf
https://www.cis.upenn.edu/~cis6100/diffgeom-n.pdf
https://doi.org/10.1007/978-3-540-44953-9_2
http://link.springer.com/10.1007/978-3-540-44953-9_2
http://link.springer.com/10.1007/978-3-540-44953-9_2
https://doi.org/10.12693/APhysPolA.86.291
http://przyrbwn.icm.edu.pl/APP/PDF/86/a086z3p01.pdf
http://przyrbwn.icm.edu.pl/APP/PDF/86/a086z3p01.pdf
https://doi.org/10.1007/s00006-010-0229-5
https://doi.org/10.1007/s00006-010-0229-5
https://link.springer.com/article/10.1007/s00006-010-0229-5
https://leanprover.zulipchat.com/#narrow/stream/116395-maths/topic/generalizing.20deriv.20to.20TVS/near/359284921
https://leanprover.zulipchat.com/#narrow/stream/116395-maths/topic/generalizing.20deriv.20to.20TVS/near/359284921
https://doi.org/10.4230/LIPIcs.ITP.2023.35
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.35
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.35
https://github.com/lecopivo/SciLean
https://github.com/lecopivo/SciLean

Github references

This section contains references to issues and pull requests on GitHub, which is the main place
that development of community-owned software such as Lean and mathlib occurs. While not
peer-reviewed in a conventional sense, the pull requests (i.e. code contributions) in this section
have been reviewed by other contributors, and are only “merged” if they pass this review process.
This process can be anything from an instant approval in seconds to a long discussion iterating
on code changes that spans months! Italicized keys indicate self-references.

[mathlib#14303] Eric Wieser. refactor(linear_algebra/quadratic_form/basic): generalize to
semiring. Reviewed by Adam Topaz. May 2022 (cit. on p. 13).

[sympy#20691] Sudeep Sidhu. Make inversion of Matrix with MatrixSymbol as element pos-
sible. Dec. 2020 (cit. on p. 24).

[mathlib#8560] Eric Wieser. feat(matrix/kronecker): Add the Kronecker product. Reviewed
by Filippo A. E. Nuccio and Johan Commelin. Aug. 2021 (cit. on p. 29).

[mathlib#12767] Eric Wieser. feat(linear_algebra/matrix): The Weinstein–Aronszajn identity.
Reviewed by Johan Commelin. Mar. 2022 (cit. on p. 30).

[mathlib#14991] Eric Wieser. feat(data/matrix/notation): add !![1, 2; 3, 4] notation. Re-
viewed by Anne Baanen. June 2022 (cit. on pp. 29, 180).

[mathlib#18711] Eric Wieser. feat(data/matrix/reflection): lemmas for arbitrary concrete
matrices, proved via reflection. Reviewed by Oliver Nash and Yaël Dillies.
Apr. 2023 (cit. on p. 29).

[mathlib#5124] Eric Wieser. feat(linear_algebra/*): Use alternating maps for wedge and
determinant. Reviewed by Anne Baanen. Nov. 2020 (cit. on pp. 31, 165).

[mathlib#4430] Eric Wieser. feat(linear_algebra/clifford_algebra): Add a definition derived
from exterior_algebra.lean. Reviewed by Anne Baanen, Adam Topaz,
Heather Macbeth, and Utensil Song. Oct. 2020 (cit. on pp. 32, 61, 117).

[mathlib4#3840] Sébastien Gouëzel. chore(*): tweak priorities for linear algebra. Reviewed by
Scott Morrison, Eric Wieser, and Floris van Doorn. May 2023 (cit. on pp. 32,
83).

[mathlib4#8395] Eric Wieser. feat(Algebra/Module/Hom): AddMonoid.End application forms a
Module. Reviewed by Oliver Nash. Nov. 2023 (cit. on p. 38).

192

https://github.com/leanprover-community/mathlib/pull/14303
https://github.com/sympy/sympy/pull/20691
https://github.com/leanprover-community/mathlib/pull/8560
https://github.com/leanprover-community/mathlib/pull/12767
https://github.com/leanprover-community/mathlib/pull/14991
https://github.com/leanprover-community/mathlib/pull/18711
https://github.com/leanprover-community/mathlib/pull/5124
https://github.com/leanprover-community/mathlib/pull/4430
https://github.com/leanprover-community/mathlib4/pull/3840
https://github.com/leanprover-community/mathlib4/pull/8395

Github references

[mathlib#8724] Eric Wieser. feat(group_theory/group_action): generalize mul_action

.function_End to other endomorphisms. Reviewed by Anne Baanen. Aug.
2021 (cit. on p. 38).

[mathlib4#8396] Eric Wieser. feat(Algebra/GroupRingAction/Basic): RingHom application
forms a MulDistribMulAction. Reviewed by Oliver Nash. Nov. 2023 (cit. on
p. 38).

[mathlib#8968] Eric Wieser. feat(algebra/module/basic): add module.to_add_monoid_End. Re-
viewed by Johan Commelin. Sept. 2021 (cit. on p. 39).

[mathlib#997] Johan Commelin. feat(algebra/pointwise): More lemmas on pointwise multi-
plication. Reviewed by Sébastien Gouëzel. May 2019 (cit. on p. 40).

[mathlib#12865] Yaël Dillies. feat(data/finset/pointwise): Missing operations. Reviewed by
Johan Commelin. Mar. 2022 (cit. on p. 40).

[mathlib#6891] Eric Wieser. feat(algebra/module/hom): Add missing smul instances on add_

monoid_hom. Reviewed by Aaron Anderson and Anne Baanen. Mar. 2021
(cit. on p. 40).

[mathlib#4784] Yury G. Kudryashov. refactor(data/polynomial): use linear_map for monomial,
review degree. Reviewed by Eric Wieser, Bryan Gin-ge Chen, and Johan
Commelin. Oct. 2020 (cit. on pp. 40, 41).

[mathlib#7664] Eric Wieser. feat(data/polynomial): generalize polynomial.has_scalar to
require only distrib_mul_action instead of semimodule. Reviewed by Scott
Morrison, Kenny Lau, Sébastien Gouëzel, Anne Baanen, and Johan Commelin.
May 2021 (cit. on p. 41).

[mathlib#4365] Eric Wieser. feat(data/monoid_algebra): Allow R ≠ k in semimodule R

(monoid_algebra k G). Reviewed by Scott Morrison. Oct. 2020 (cit. on p. 41).

[mathlib#284] Scott Morrison. generalise finsupp.to_module. Aug. 2018 (cit. on p. 41).

[mathlib#6533] Eric Wieser. feat(data/mv_polynomial/basic): a polynomial ring over an
R-algebra is also an R-algebra. Reviewed by Johan Commelin and Riccardo
Brasca. Mar. 2021 (cit. on p. 41).

[mathlib#4770] Yury G. Kudryashov. chore(group_theory/group_action): introduce smul_

comm_class. Reviewed by Johan Commelin, Eric Wieser, and Kevin Buzzard.
Oct. 2020 (cit. on p. 42).

[mathlib#6534] Eric Wieser. feat(data/finsupp, algebra/monoid_algebra): add is_scalar_

tower and smul_comm_class. Reviewed by Johan Commelin. Mar. 2021 (cit.
on p. 42).

[mathlib#6614] Eric Wieser. feat(data/dfinsupp): add is_scalar_tower and smul_comm_class.
Reviewed by Anne Baanen. Mar. 2021 (cit. on p. 42).

193

https://github.com/leanprover-community/mathlib/pull/8724
https://github.com/leanprover-community/mathlib4/pull/8396
https://github.com/leanprover-community/mathlib/pull/8968
https://github.com/leanprover-community/mathlib/pull/997
https://github.com/leanprover-community/mathlib/pull/12865
https://github.com/leanprover-community/mathlib/pull/6891
https://github.com/leanprover-community/mathlib/pull/4784
https://github.com/leanprover-community/mathlib/pull/7664
https://github.com/leanprover-community/mathlib/pull/4365
https://github.com/leanprover-community/mathlib/pull/284
https://github.com/leanprover-community/mathlib/pull/6533
https://github.com/leanprover-community/mathlib/pull/4770
https://github.com/leanprover-community/mathlib/pull/6534
https://github.com/leanprover-community/mathlib/pull/6614

Github references

[mathlib#8965] Eric Wieser. chore(field_theory/fixed): reuse existing mul_semiring_action

.to_alg_hom by providing smul_comm_class. Reviewed by Johan Commelin.
Sept. 2021 (cit. on p. 42).

[mathlib#15876] Eric Wieser. feat(group_theory/group_action/conj_act): smul_comm_class
instances. Reviewed by Oliver Nash. Aug. 2022 (cit. on p. 42).

[mathlib#10262] Eric Wieser. feat(linear_algebra/pi_tensor_prod): generalize actions and
provide missing smul_comm_class and is_scalar_tower instance. Reviewed
by Johan Commelin. Nov. 2021 (cit. on p. 42).

[mathlib#6542] Eric Wieser. feat(data/mv_polynomial/basic): add is_scalar_tower and
smul_comm_class instances. Reviewed by Johan Commelin. Mar. 2021 (cit. on
p. 42).

[mathlib#6592] Eric Wieser. chore(data/polynomial/basic): add missing is_scalar_tower and
smul_comm_class instances. Reviewed by Johan Commelin. Mar. 2021 (cit. on
p. 42).

[mathlib#6139] Eric Wieser. chore(algebra/module/pi): add missing smul_comm_class in-
stances. Reviewed by Johan Commelin. Feb. 2021 (cit. on p. 42).

[mathlib#5205] Eric Wieser. feat(algebra/module/basic): Add smul_comm_class instances.
Reviewed by Anne Baanen. Dec. 2020 (cit. on p. 42).

[mathlib#5369] Eric Wieser. feat(algebra/module/basic): Add symmetric smul_comm_class

instances for int and nat. Reviewed by Kevin Buzzard, Floris van Doorn,
and Anne Baanen. Dec. 2020 (cit. on p. 42).

[mathlib#5509] Eric Wieser. fix(algebra/module/basic): Do not attach the ℕ and ℤ is_

scalar_tower and smul_comm_class instances to a specific definition of smul.
Reviewed by Sébastien Gouëzel. Dec. 2020 (cit. on p. 42).

[mathlib#13174] Eric Wieser. fix(algebra/module/basic,group_theory/group_action/defs): gen-
eralize nat and int smul_comm_class instances. Reviewed by Johan Commelin.
Apr. 2022 (cit. on p. 42).

[mathlib#7932] Oliver Nash. feat(algebra/monoid_algebra): adjointness for the functor G ↦

monoid_algebra k G when G carries only has_mul. Reviewed by Eric Wieser.
June 2021 (cit. on p. 43).

[mathlib#7416] Kexing Ying. feat(linear_algebra/quadratic_form): Complex version of
Sylvester’s law of inertia. Reviewed by Eric Wieser, Johan Commelin, and
Floris van Doorn. Apr. 2021 (cit. on p. 43).

[mathlib#7084] Sébastien Gouëzel. refactor(*): kill nat multiplication diamonds. Reviewed
by Eric Wieser, Scott Morrison, and Johan Commelin. Apr. 2021 (cit. on
pp. 45, 46).

194

https://github.com/leanprover-community/mathlib/pull/8965
https://github.com/leanprover-community/mathlib/pull/15876
https://github.com/leanprover-community/mathlib/pull/10262
https://github.com/leanprover-community/mathlib/pull/6542
https://github.com/leanprover-community/mathlib/pull/6592
https://github.com/leanprover-community/mathlib/pull/6139
https://github.com/leanprover-community/mathlib/pull/5205
https://github.com/leanprover-community/mathlib/pull/5369
https://github.com/leanprover-community/mathlib/pull/5509
https://github.com/leanprover-community/mathlib/pull/13174
https://github.com/leanprover-community/mathlib/pull/7932
https://github.com/leanprover-community/mathlib/pull/7416
https://github.com/leanprover-community/mathlib/pull/7084

Github references

[mathlib#12182] Gabriel Ebner. feat: add_monoid_with_one, add_group_with_one. Reviewed by
Eric Wieser, Floris van Doorn, Yury G. Kudryashov, and Yaël Dillies. Feb.
2022 (cit. on p. 46).

[mathlib#14894] Anne Baanen. chore({algebra,data/rat}): use forgetful inheritance for
algebra_rat. Reviewed by Eric Wieser, Riccardo Brasca, and Eric Rodriguez.
June 2022 (cit. on p. 46).

[mathlib#8945] Eric Wieser. feat(group_theory/sub{monoid,group}): pointwise actions on
add_sub{monoid,group}s and sub{monoid,group,module,semiring,ring,algebra}s.
Reviewed by Chris Hughes. Sept. 2021 (cit. on p. 47).

[mathlib#8627] Chris Hughes. feat(group_theory/group_action/conj_act): conjugation action
of groups. Reviewed by Eric Wieser and Johan Commelin. Aug. 2021 (cit. on
p. 47).

[mathlib#8592] Chris Hughes. feat(group_theory/group_action/subgroup): Conjugation ac-
tion on subgroups of a group. Reviewed by Eric Wieser, Yaël Dillies, and
Johan Commelin. Aug. 2021 (cit. on p. 47).

[mathlib#7630] Eric Wieser. feat(algebra/opposites): add has_scalar (opposite α) α in-
stances. Reviewed by Anne Baanen. May 2021 (cit. on p. 48).

[mathlib#10543] Eric Wieser. feat(group_theory/group_action/defs): add a typeclass to show
that an action is central (aka symmetric). Reviewed by @Julian-Kuelshammer,
Johan Commelin, and Yury G. Kudryashov. Nov. 2021 (cit. on p. 49).

[mathlib#10720] Eric Wieser. chore(algebra/module/submodule): missing is_central_scalar

instance. Reviewed by Rob Lewis. Dec. 2021 (cit. on p. 49).

[mathlib#11291] Eric Wieser. chore(topology/algebra/module/basic): add continuous_linear_

map.is_central_scalar. Reviewed by Oliver Nash. Jan. 2022 (cit. on p. 49).

[mathlib#11297] Eric Wieser. feat(algebra,linear_algebra,ring_theory): more is_central_

scalar instances. Reviewed by Oliver Nash. Jan. 2022 (cit. on p. 49).

[mathlib#12248] Eric Wieser. feat(measure_theory/function/ae_eq_fun): generalize scalar
actions. Reviewed by Rémy Degenne. Feb. 2022 (cit. on p. 49).

[mathlib#12272] Eric Wieser. chore(topology/continuous_function/bounded): add an is_

central_scalar instance. Reviewed by Rob Lewis. Feb. 2022 (cit. on p. 49).

[mathlib#12434] Eric Wieser. chore(topology/algebra/uniform_mul_action): add
has_uniform_continuous_const_smul.op. Reviewed by Oliver Nash. Mar.
2022 (cit. on p. 49).

[mathlib#13710] Eric Wieser. chore(topology/continuous_function/zero_at_infty): add is_

central_scalar instance. Reviewed by Frédéric Dupuis. Apr. 2022 (cit. on
p. 49).

195

https://github.com/leanprover-community/mathlib/pull/12182
https://github.com/leanprover-community/mathlib/pull/14894
https://github.com/leanprover-community/mathlib/pull/8945
https://github.com/leanprover-community/mathlib/pull/8627
https://github.com/leanprover-community/mathlib/pull/8592
https://github.com/leanprover-community/mathlib/pull/7630
https://github.com/leanprover-community/mathlib/pull/10543
https://github.com/leanprover-community/mathlib/pull/10720
https://github.com/leanprover-community/mathlib/pull/11291
https://github.com/leanprover-community/mathlib/pull/11297
https://github.com/leanprover-community/mathlib/pull/12248
https://github.com/leanprover-community/mathlib/pull/12272
https://github.com/leanprover-community/mathlib/pull/12434
https://github.com/leanprover-community/mathlib/pull/13710

Github references

[mathlib#15359] Eric Wieser. chore(linear_algebra/alternating): add an is_central_scalar

instance. Reviewed by Rob Lewis. July 2022 (cit. on p. 49).

[mathlib#18682] Yaël Dillies. feat(data/finset/pointwise): a • (s ∩ t) = a • s ∩ a • t. Re-
viewed by Eric Wieser. Mar. 2023 (cit. on p. 49).

[mathlib#10716] Eric Wieser. feat(algebra/algebra/basic): Algebras are bimodules. Reviewed
by Anne Baanen. Dec. 2021 (cit. on p. 50).

[mathlib#7152] Eric Wieser. Algebras should imply both left and right actions. Sept. 2023
(cit. on pp. 50, 178).

[mathlib4#8909] Eric Wieser. feat(GroupTheory/GroupAction/Opposite): add notation for
right and left actions. Reviewed by Kyle Miller, Johan Commelin, Junyan Xu,
and Yaël Dillies. Dec. 2023 (cit. on p. 50).

[mathlib4#5368] Yury G. Kudryashov. feat: define a type synonym for right action on the
domain of a function. Reviewed by Eric Wieser and Sébastien Gouëzel. June
2023 (cit. on p. 50).

[mathlib4#6487] Eric Wieser. refactor(Data/Matrix): Eliminate ⬝ notation in favor of HMul.
Reviewed by Jon Eugster and Oliver Nash. Aug. 2023 (cit. on p. 52).

[mathlib#104] Simon Hudon. feat(tactic/ext): new ext tactic and corresponding
extensionality… Reviewed by Johannes Hölzl and Mario Carneiro. Apr.
2018 (cit. on p. 55).

[mathlib#7029] Greg Price. chore(algebra/direct_sum_graded): golf proofs. Reviewed by Eric
Wieser and Scott Morrison. Apr. 2021 (cit. on p. 60).

[mathlib#3408] Chris Hughes. feat(group_theory/semidirect_product): mk_eq_inl_mul_inr

and hom_ext. Reviewed by Scott Morrison. July 2020 (cit. on p. 61).

[mathlib#3531] Adam Topaz. feat(linear_algebra/tensor_algebra): Tensor algebras. Reviewed
by Eric Wieser, Scott Morrison, Patrick Massot, Johan Commelin, and Chris
Hughes. July 2020 (cit. on p. 61).

[mathlib#4078] Scott Morrison. feat(algebra/ring_quot): quotients of noncommutative rings.
Reviewed by Eric Wieser, Kenny Lau, and Johan Commelin. Sept. 2020
(cit. on pp. 61, 114, 115).

[mathlib#4741] Yury G. Kudryashov. chore(*): a few more type-specific ext lemmas. Reviewed
by Johan Commelin and Eric Wieser. Oct. 2020 (cit. on p. 61).

[mathlib#5484] Eric Wieser. feat(group_theory/*): mark some lemmas as ext (about homs
out of free constructions). Reviewed by Floris van Doorn. Dec. 2020 (cit. on
p. 61).

[mathlib#4297] Eric Wieser. feat(linear_algebra/exterior_algebra): Add an exterior algebra.
Reviewed by Anne Baanen and Scott Morrison. Sept. 2020 (cit. on p. 61).

196

https://github.com/leanprover-community/mathlib/pull/15359
https://github.com/leanprover-community/mathlib/pull/18682
https://github.com/leanprover-community/mathlib/pull/10716
https://github.com/leanprover-community/mathlib/pull/7152
https://github.com/leanprover-community/mathlib4/pull/8909
https://github.com/leanprover-community/mathlib4/pull/5368
https://github.com/leanprover-community/mathlib4/pull/6487
https://github.com/leanprover-community/mathlib/pull/104
https://github.com/leanprover-community/mathlib/pull/7029
https://github.com/leanprover-community/mathlib/pull/3408
https://github.com/leanprover-community/mathlib/pull/3531
https://github.com/leanprover-community/mathlib/pull/4078
https://github.com/leanprover-community/mathlib/pull/4741
https://github.com/leanprover-community/mathlib/pull/5484
https://github.com/leanprover-community/mathlib/pull/4297

Github references

[mathlib#4821] Eric Wieser. feat(data/dfinsupp): Port over the finsupp.lift_add_hom API.
Reviewed by Johan Commelin. Oct. 2020 (cit. on p. 61).

[mathlib#5640] Eric Wieser. feat(data/zsqrtd/to_real): Add to_real. Reviewed by Johan
Commelin, Mario Carneiro, Bryan Gin-ge Chen, and Anne Baanen. Jan. 2021
(cit. on p. 61).

[mathlib#6105] Eric Wieser. refactor(linear_algebra/tensor_product): Use a more powerful
lemma for ext. Reviewed by Johan Commelin. Feb. 2021 (cit. on p. 61).

[mathlib#6124] Eric Wieser. feat(linear_algebra/prod): add an ext lemma that recurses into
products. Reviewed by Johan Commelin. Feb. 2021 (cit. on p. 61).

[mathlib#8105] Eric Wieser. feat(data/complex/module): add complex.alg_hom_ext. Reviewed
by Anne Baanen. June 2021 (cit. on pp. 61, 134).

[mathlib#8641] Eric Wieser. feat(linear_algebra/basic, group_theory/quotient_group, alge-
bra/lie/quotient): ext lemmas for morphisms out of quotients. Reviewed by
Oliver Nash and Anne Baanen. Aug. 2021 (cit. on p. 61).

[mathlib#8783] Eric Wieser. feat(algebra/direct_sum): graded algebras. Reviewed by Kevin
Buzzard and Johan Commelin. Aug. 2021 (cit. on pp. 61, 63).

[mathlib#10730] Eric Wieser. feat(linear_algebra/clifford_algebra/equivs): There is a clifford
algebra isomorphic to the dual numbers. Reviewed by Johan Commelin and
Rob Lewis. Dec. 2021 (cit. on pp. 61, 135).

[mathlib#10754] Eric Wieser. feat(algebra/triv_sq_zero_ext): universal property. Reviewed
by Johan Commelin. Dec. 2021 (cit. on pp. 61, 135).

[mathlib#14803] Eric Wieser. feat(linear_algebra/clifford_algebra/of_alternating): extend
alternating maps to the exterior algebra. Reviewed by Oliver Nash. June 2022
(cit. on pp. 61, 166).

[mathlib4#6417] Eric Wieser. feat(RingTheory/TensorProduct): heterogenize. Reviewed by
Johan Commelin and Antoine Chambert-Loir. Aug. 2023 (cit. on p. 62).

[mathlib4#8116] Eric Wieser. feat(Data/Polynomial/AlgebraMap): more results for non-
commutative polynomials. Reviewed by Yaël Dillies and Johan Commelin.
Nov. 2023 (cit. on p. 62).

[mathlib#6053] Eric Wieser. feat(algebra/direct_sum_graded): endow direct_sum with a ring
structure. Reviewed by Rob Lewis, Anne Baanen, Scott Morrison, and Johan
Commelin. Feb. 2021 (cit. on p. 63).

[mathlib#9586] Eric Wieser. feat(algebra/graded_monoid): Split out graded monoids from
graded rings. Reviewed by Johan Commelin. Oct. 2021 (cit. on p. 63).

197

https://github.com/leanprover-community/mathlib/pull/4821
https://github.com/leanprover-community/mathlib/pull/5640
https://github.com/leanprover-community/mathlib/pull/6105
https://github.com/leanprover-community/mathlib/pull/6124
https://github.com/leanprover-community/mathlib/pull/8105
https://github.com/leanprover-community/mathlib/pull/8641
https://github.com/leanprover-community/mathlib/pull/8783
https://github.com/leanprover-community/mathlib/pull/10730
https://github.com/leanprover-community/mathlib/pull/10754
https://github.com/leanprover-community/mathlib/pull/14803
https://github.com/leanprover-community/mathlib4/pull/6417
https://github.com/leanprover-community/mathlib4/pull/8116
https://github.com/leanprover-community/mathlib/pull/6053
https://github.com/leanprover-community/mathlib/pull/9586

Github references

[mathlib#10115] Jujian Zhang. feat(ring_theory/graded_algebra): definition of type class
graded_algebra. Reviewed by Eric Wieser, Kevin Buzzard, and Johan Com-
melin. Nov. 2021 (cit. on p. 63).

[mathlib#10255] Eric Wieser. feat(linear_algebra/tensor_power): the tensor powers form a
graded algebra. Reviewed by Yaël Dillies, Anne Baanen, and Scott Morrison.
Nov. 2021 (cit. on p. 73).

[mathlib#9214] Eric Wieser. feat(linear_algebra/direct_sum): submodule_is_internal_iff_
independent_and_supr_eq_top. Reviewed by Johan Commelin, Scott Morri-
son, and Bryan Gin-ge Chen. Sept. 2021 (cit. on p. 75).

[mathlib#11750] Anne Baanen. feat(*): define subobject classes from submonoid up to subfield.
Reviewed by Eric Wieser, Yaël Dillies, and Riccardo Brasca. Jan. 2022 (cit. on
p. 75).

[lean4#2074] Kevin Buzzard. Typeclass Inference Failure. Jan. 30, 2023 (cit. on pp. 80,
88).

[lean4#777] Gabriel Ebner. Definitional eta for structures. Nov. 9, 2021 (cit. on p. 88).

[lean4#2210] Gabriel Ebner. Skip proof arguments during unification, and try structure
eta last. May 15, 2023 (cit. on p. 88).

[mathlib#14619] Eric Wieser. feat(linear_algebra/clifford_algebra/fold): Add recursors for
folding along generators. Reviewed by Oliver Nash. June 2022 (cit. on p. 99).

[mathlib#14790] Eric Wieser. feat(linear_algebra/clifford_algebra/even): Universal property
and isomorphisms for the even subalgebra. Reviewed by Johan Commelin.
June 2022 (cit. on p. 109).

[mathlib#11468] Eric Wieser. feat(linear_algebra/clifford_algebra): the clifford algebra is
isomorphic as a module to the exterior algebra. Reviewed by Johan Commelin.
Jan. 2022 (cit. on pp. 109, 120).

[mathlib#17833] Eric Wieser. refactor(ring_theory/ideal/quotient): extract a ring_con struc-
ture. Reviewed by Anne Baanen. Dec. 2022 (cit. on p. 114).

[mathlib#4079] Scott Morrison. refactor(linear_algebra/tensor_algebra): build as a quotient
of a free algebra. Reviewed by Johan Commelin. Sept. 2020 (cit. on p. 115).

[mathlib#6491] Eric Wieser. feat(linear_algebra/clifford_algebra): add definitions of the
conjugation operators and some API. Reviewed by Johan Commelin and
Anne Baanen. Mar. 2021 (cit. on p. 119).

[mathlib#6416] Eric Wieser. feat(linear_algebra/{clifford,exterior,tensor}_algebra): add in-
duction principles. Reviewed by Anne Baanen. Feb. 2021 (cit. on p. 119).

[mathlib4#7985] Richard Copley. feat: Nontrivial instances for ExteriorAlgebra, CliffordAlgebra.
Reviewed by Eric Wieser. Oct. 2023 (cit. on p. 123).

198

https://github.com/leanprover-community/mathlib/pull/10115
https://github.com/leanprover-community/mathlib/pull/10255
https://github.com/leanprover-community/mathlib/pull/9214
https://github.com/leanprover-community/mathlib/pull/11750
https://github.com/leanprover/lean4/pull/2074
https://github.com/leanprover/lean4/pull/777
https://github.com/leanprover/lean4/pull/2210
https://github.com/leanprover-community/mathlib/pull/14619
https://github.com/leanprover-community/mathlib/pull/14790
https://github.com/leanprover-community/mathlib/pull/11468
https://github.com/leanprover-community/mathlib/pull/17833
https://github.com/leanprover-community/mathlib/pull/4079
https://github.com/leanprover-community/mathlib/pull/6491
https://github.com/leanprover-community/mathlib/pull/6416
https://github.com/leanprover-community/mathlib4/pull/7985

Github references

[mathlib#16040] BillyMiao. feat(linear_algebra/clifford_algebra/spin_group): Spin Group.
Reviewed by Eric Wieser and Utensil Song. Aug. 2022 (cit. on p. 123).

[mathlib4#9111] Utensil Song. feat(LinearAlgebra/CliffordAlgebra): port SpinGroup. Reviewed
by Winston Yin, @grunweg, and Eric Wieser. Dec. 2023 (cit. on p. 123).

[mathlib#11542] Eric Wieser. feat(linear_algebra/{tensor,exterior,clifford}_algebra): these
algebras are graded by powers of the submodules of their generators. Reviewed
by Johan Commelin. Jan. 2022 (cit. on p. 124).

[mathlib#4984] Eric Wieser. feat(group_theory/sub{monoid,group}): Add closure_

induction' for subtypes. Reviewed by Anne Baanen. Nov. 2020 (cit. on
p. 124).

[mathlib#11533] Eric Wieser. feat(algebra/algebra/operations): remove two hypotheses from
submodule.mul_induction_on. Reviewed by Oliver Nash. Jan. 2022 (cit. on
p. 124).

[mathlib#11556] Eric Wieser. feat(group_theory/sub{monoid,group}, linear_algebra/basic):
add supr_induction for submonoid, add_submonoid, subgroup, add_subgroup,
and submodule. Reviewed by Johan Commelin. Jan. 2022 (cit. on p. 124).

[mathlib#14219] Eric Wieser. feat(algebra/algebra/operations): add right induction principles
for power membership. Reviewed by Anne Baanen. May 2022 (cit. on p. 124).

[mathlib#18146] Eric Wieser. feat(counterexamples/quadratic_form): symmetric bilinear forms
in char 2 do not always inject into quadratic forms. Reviewed by Johan
Commelin. Jan. 2023 (cit. on p. 128).

[mathlib4#14292] Eric Wieser. feat: BilinForm.toQuadraticForm is surjective in free modules.
June 2024 (cit. on p. 129).

[mathlib#5722] Eric Wieser. feat(linear_algebra/{exterior,tensor,free}_algebra): provide left-
inverses for algebra_map and ι. Reviewed by Anne Baanen. Jan. 2021 (cit. on
p. 129).

[mathlib#15905] Eric Wieser. feat(algebra/monoid_algebra): add division by a generator.
Reviewed by Anne Baanen, Damiano Testa, and Kevin Buzzard. Aug. 2022
(cit. on p. 130).

[mathlib#18633] Eric Wieser. feat(ring_theory/mv_polynomial/ideal): lemmas about mono-
mial ideals. Reviewed by Johan Commelin. Mar. 2023 (cit. on p. 130).

[mathlib4#6657] Eric Wieser. feat(Counterexamples/CliffordAlgebra_not_injective):
algebraMap is not always injective. Reviewed by Kevin Buzzard, Riccardo
Brasca, Mario Carneiro, Oliver Nash, and Johan Commelin. Aug. 2023
(cit. on p. 130).

199

https://github.com/leanprover-community/mathlib/pull/16040
https://github.com/leanprover-community/mathlib4/pull/9111
https://github.com/leanprover-community/mathlib/pull/11542
https://github.com/leanprover-community/mathlib/pull/4984
https://github.com/leanprover-community/mathlib/pull/11533
https://github.com/leanprover-community/mathlib/pull/11556
https://github.com/leanprover-community/mathlib/pull/14219
https://github.com/leanprover-community/mathlib/pull/18146
https://github.com/leanprover-community/mathlib4/pull/14292
https://github.com/leanprover-community/mathlib/pull/5722
https://github.com/leanprover-community/mathlib/pull/15905
https://github.com/leanprover-community/mathlib/pull/18633
https://github.com/leanprover-community/mathlib4/pull/6657

Github references

[mathlib4#9670] Eric Wieser. feat(Counterexamples/CliffordAlgebra_not_injective): Some
quadratic forms cannot be constructed from bilinear forms. Reviewed by
Antoine Chambert-Loir and Moritz Doll. Jan. 2024 (cit. on p. 131).

[mathlib#8107] Eric Wieser. feat(data/complex/module): add complex.lift to match zsqrtd

.lift. Reviewed by Filippo A. E. Nuccio and Anne Baanen. June 2021
(cit. on p. 134).

[mathlib#8165] Eric Wieser. feat(linear_algebra/clifford_algebra): the reals and complex
numbers have isomorphic real clifford algebras. Reviewed by Anne Baanen.
July 2021 (cit. on p. 134).

[mathlib#8739] Eric Wieser. feat(linear_algebra/clifford_algebra/equivs): the equivalences
preserve conjugation. Reviewed by Johan Commelin. Aug. 2021 (cit. on
pp. 134, 137).

[mathlib#5109] Kenny Lau. feat(algebra/triv_sq_zero_ext): trivial square-zero extension.
Reviewed by Johan Commelin and Eric Wieser. Nov. 2020 (cit. on pp. 135,
138).

[mathlib#8551] Eric Wieser. feat(algebra/quaternion_basis): add a quaternion version of
complex.lift. Reviewed by Johan Commelin and Anne Baanen. Aug. 2021
(cit. on p. 136).

[mathlib4#9441] Eric Wieser. feat(Algebra/QuaternionBasis): extensionality for algebra mor-
phisms from quaternions. Reviewed by Oliver Nash. Jan. 2024 (cit. on p. 136).

[mathlib#8670] Eric Wieser. feat(linear_algebra/clifford_algebra/equivs): there is a clifford
algebra isomorphic to every quaternion algebra. Reviewed by Johan Commelin.
Aug. 2021 (cit. on p. 137).

[mathlib4#9510] Eric Wieser. feat(Analysis/Calculus/DualNumber): Extending differentiable
functions to dual numbers. Jan. 2024 (cit. on p. 138).

[mathlib#18384] Eric Wieser. refactor(algebra/{dual_number,triv_sq_zero_ext}): support
non-commutative rings. Reviewed by Oliver Nash and Jireh Loreaux. Feb.
2023 (cit. on p. 138).

[mathlib#10729] Eric Wieser. refactor(algebra/triv_sq_zero_ext): generalize and cleanup.
Reviewed by Johan Commelin. Dec. 2021 (cit. on p. 139).

[mathlib#18383] Eric Wieser. feat(algebra/dual_quaternion): two equivalent ways to construct
the dual quaternions. Reviewed by Johan Commelin. Feb. 2023 (cit. on p. 139).

[mathlib4#7934] Eric Wieser. refactor(Algebra/DualNumber): generalize the universal property
to non-commutative rings. Reviewed by Yaël Dillies and Johan Commelin.
Oct. 2023 (cit. on p. 139).

[mathlib4#7962] Eric Wieser. feat: DualNumber (Quaternion R) as a CliffordAlgebra. Oct.
2023 (cit. on p. 140).

200

https://github.com/leanprover-community/mathlib4/pull/9670
https://github.com/leanprover-community/mathlib/pull/8107
https://github.com/leanprover-community/mathlib/pull/8165
https://github.com/leanprover-community/mathlib/pull/8739
https://github.com/leanprover-community/mathlib/pull/5109
https://github.com/leanprover-community/mathlib/pull/8551
https://github.com/leanprover-community/mathlib4/pull/9441
https://github.com/leanprover-community/mathlib/pull/8670
https://github.com/leanprover-community/mathlib4/pull/9510
https://github.com/leanprover-community/mathlib/pull/18384
https://github.com/leanprover-community/mathlib/pull/10729
https://github.com/leanprover-community/mathlib/pull/18383
https://github.com/leanprover-community/mathlib4/pull/7934
https://github.com/leanprover-community/mathlib4/pull/7962

Github references

[mathlib4#14285] Eric Wieser. feat: QuadraticForm.baseChange is unique when it exists. June
2024 (cit. on p. 142).

[mathlib4#6306] Eric Wieser. feat(LinearAlgebra/BilinearForm/TensorProduct): base change
of bilinear forms. Reviewed by Oliver Nash. Aug. 2023 (cit. on p. 145).

[mathlib#5430] Eric Wieser. feat(linear_algebra/tensor_product,algebra/module/lin-
ear_map): Made tmul_smul and map_smul_of_tower work for int over
semirings. Reviewed by Kevin Buzzard, Johan Commelin, and Kenny Lau.
Dec. 2020 (cit. on p. 146).

[mathlib#5317] Eric Wieser. feat(linear_algebra/tensor_product): Inherit smul through is_

scalar_tower. Reviewed by Johan Commelin and Bryan Gin-ge Chen. Dec.
2020 (cit. on p. 146).

[mathlib#19143] Eric Wieser. feat(ring_theory/tensor_product): add missing scalar tower
instances. Reviewed by Riccardo Brasca. June 2023 (cit. on p. 147).

[mathlib4#6035] Eric Wieser. feat: heterogenize TensorProduct.congr and friends. Reviewed
by Kevin Buzzard and Johan Commelin. July 2023 (cit. on pp. 148, 149).

[mathlib#15241] Andrew Yang. feat(ring_theory/tensor_product): A-algebra structure on A'

⊗[R] B. Reviewed by Eric Wieser and Riccardo Brasca. July 2022 (cit. on
p. 149).

[mathlib4#7409] Eric Wieser. feat(RingTheory/TensorProduct): the universal property of the
tensor product of algebras. Reviewed by Riccardo Brasca. Sept. 2023 (cit. on
p. 151).

[mathlib4#6778] Eric Wieser. feat: base change of Clifford algebras. Reviewed by Oliver Nash.
Aug. 2023 (cit. on p. 151).

[mathlib4#6072] Eric Wieser. feat(Algebra/FreeAlgebra): support towers of algebras. Reviewed
by Oliver Nash. July 2023 (cit. on p. 151).

[mathlib4#6066] Eric Wieser. feat: add scalar tower instances for RingQuot and BilinForm.
Reviewed by Oliver Nash. July 2023 (cit. on p. 151).

[mathlib4#6073] Eric Wieser. feat(Algebra/TensorAlgebra): support towers of algebras. Re-
viewed by Oliver Nash. July 2023 (cit. on p. 151).

[mathlib4#6074] Eric Wieser. feat(LinearAlgebra/CliffordAlgebra): support towers of algebras.
Reviewed by Oliver Nash. July 2023 (cit. on p. 151).

[mathlib4#7569] Christopher Hoskin. refactor(LinearAlgebra/QuadraticForm): Generalise
QuadraticForm to QuadraticMap. Reviewed by Eric Wieser. Oct. 2023 (cit. on
p. 152).

[mathlib4#6555] Eric Wieser. feat(LinearAlgebra/TensorProduct/Opposite): Aᵐᵒᵖ ⊗[R] Bᵐᵒᵖ

≃ₐ[S] (A ⊗[R] B)ᵐᵒᵖ. Reviewed by Oliver Nash. Aug. 2023 (cit. on p. 154).

201

https://github.com/leanprover-community/mathlib4/pull/14285
https://github.com/leanprover-community/mathlib4/pull/6306
https://github.com/leanprover-community/mathlib/pull/5430
https://github.com/leanprover-community/mathlib/pull/5317
https://github.com/leanprover-community/mathlib/pull/19143
https://github.com/leanprover-community/mathlib4/pull/6035
https://github.com/leanprover-community/mathlib/pull/15241
https://github.com/leanprover-community/mathlib4/pull/7409
https://github.com/leanprover-community/mathlib4/pull/6778
https://github.com/leanprover-community/mathlib4/pull/6072
https://github.com/leanprover-community/mathlib4/pull/6066
https://github.com/leanprover-community/mathlib4/pull/6073
https://github.com/leanprover-community/mathlib4/pull/6074
https://github.com/leanprover-community/mathlib4/pull/7569
https://github.com/leanprover-community/mathlib4/pull/6555

Github references

[mathlib#10939] Eric Wieser. feat(quadratic_form/prod): quadratic forms on product and pi
types. Reviewed by Johan Commelin. Dec. 2021 (cit. on p. 156).

[mathlib4#9141] Eric Wieser. feat: define QuadraticForm.IsOrtho as Q (x + y) = Q x + Q y.
Reviewed by Johan Commelin. Dec. 2023 (cit. on p. 156).

[mathlib4#7866] Eric Wieser. refactor(Data/ZMod/IntUnitsPower): generalize ZMod 2 to
work for Nat and Int too. Reviewed by Jireh Loreaux. Oct. 2023 (cit. on
p. 157).

[mathlib#5311] Frédéric Dupuis. feat(linear_algebra/pi_tensor_product): define the tensor
product of an indexed family of semimodules. Reviewed by Eric Wieser, Johan
Commelin, and Kevin Buzzard. Dec. 2020 (cit. on p. 161).

[mathlib4#7394] Eric Wieser. feat: the graded tensor product. Reviewed by Yaël Dillies and
Rob Lewis. Sept. 2023 (cit. on p. 161).

[mathlib4#7644] Eric Wieser. feat(LinearAlgebra/CliffordAlgebra): isomorphism for direct
sums of vector spaces. Reviewed by Oliver Nash and Mario Carneiro. Oct.
2023 (cit. on p. 162).

[mathlib#5102] Eric Wieser. feat(linear_algebra): Add alternating multilinear maps. Reviewed
by Johan Commelin, Kevin Buzzard, Bryan Gin-ge Chen, and Anne Baanen.
Nov. 2020 (cit. on p. 165).

[mathlib#5136] Eric Wieser. feat(linear_algebra/multilinear): Add dom_dom_congr. Reviewed
by Bhavik Mehta and Johan Commelin. Nov. 2020 (cit. on p. 165).

[mathlib#6708] Eric Wieser. chore(linear_algebra/determinant): redefine det using
multilinear_map.alternatization. Reviewed by Anne Baanen. Mar. 2021
(cit. on p. 165).

[mathlib#5269] Eric Wieser. feat(linear_algebra/alternating): Add dom_coprod. Reviewed by
Gabriel Ebner, Johan Commelin, and Bryan Gin-ge Chen. Dec. 2020 (cit. on
pp. 165, 166).

[mathlib#8576] Anatole Dedecker. feat(analysis/normed_space/exponential): define exponen-
tial in a Banach algebra and prove basic results. Reviewed by Patrick Massot.
Aug. 2021 (cit. on p. 168).

[mathlib#19244] Eric Wieser. refactor: Remove the K argument from exp. Nov. 2023 (cit. on
p. 168).

[mathlib4#8370] Eric Wieser. refactor(Analysis/NormedSpace/Exponential): remove the 𝕂

argument from exp. Nov. 2023 (cit. on p. 168).

[mathlib#13444] Eric Wieser. feat(analysis/normed_space/exponential): Weaken typeclass
requirements. Reviewed by Frédéric Dupuis. Apr. 2022 (cit. on pp. 168, 171).

202

https://github.com/leanprover-community/mathlib/pull/10939
https://github.com/leanprover-community/mathlib4/pull/9141
https://github.com/leanprover-community/mathlib4/pull/7866
https://github.com/leanprover-community/mathlib/pull/5311
https://github.com/leanprover-community/mathlib4/pull/7394
https://github.com/leanprover-community/mathlib4/pull/7644
https://github.com/leanprover-community/mathlib/pull/5102
https://github.com/leanprover-community/mathlib/pull/5136
https://github.com/leanprover-community/mathlib/pull/6708
https://github.com/leanprover-community/mathlib/pull/5269
https://github.com/leanprover-community/mathlib/pull/8576
https://github.com/leanprover-community/mathlib/pull/19244
https://github.com/leanprover-community/mathlib4/pull/8370
https://github.com/leanprover-community/mathlib/pull/13444

Github references

[mathlib#13426] Eric Wieser. feat(topology/algebra/module/multilinear): relax requirements
for continuous_multilinear_map.mk_pi_algebra. Reviewed by Yury G.
Kudryashov and Frédéric Dupuis. Apr. 2022 (cit. on p. 168).

[mathlib#13987] Eric Wieser. feat(topology/algebra/monoid): add missing has_continuous_

const_smul instances. Reviewed by Sébastien Gouëzel. May 2022 (cit. on
p. 168).

[mathlib#9379] Heather Macbeth. chore(analysis/normed_space/*): prereqs for #8611. Re-
viewed by Scott Morrison, Yury G. Kudryashov, Eric Wieser, and Oliver
Nash. Sept. 2021 (cit. on p. 169).

[mathlib#13497] Eric Wieser. feat(analysis/matrix): define the frobenius norm on matrices.
Reviewed by Johan Commelin. Apr. 2022 (cit. on p. 169).

[mathlib#13518] Eric Wieser. feat(analysis/matrix): provide a normed_algebra structure on
matrices. Reviewed by Frédéric Dupuis and Yaël Dillies. Apr. 2022 (cit. on
pp. 170, 171).

[mathlib4#9476] Eric Wieser. feat(Analysis/Matrix): linfty_op_nnnorm agrees with the opera-
tor norm. Reviewed by Johan Commelin. Jan. 2024 (cit. on p. 170).

[mathlib#13544] Eric Wieser. fix(analysis/normed_space/basic): allow the zero ring to be a
normed algebra. Reviewed by Bryan Gin-ge Chen and Johan Commelin. Apr.
2022 (cit. on p. 170).

[mathlib#13520] Eric Wieser. feat(analysis/normed_space/matrix_exponential): lemmas about
the matrix exponential. Reviewed by Frédéric Dupuis. Apr. 2022 (cit. on
p. 171).

[mathlib#13402] Eric Wieser. feat(analysis/normed_space/exponential): ring homomorphisms
are preserved by the exponential. Reviewed by Frédéric Dupuis and Johan
Commelin. Apr. 2022 (cit. on p. 171).

[mathlib#13488] Eric Wieser. feat(analysis/normed_space/exponential): add pi.exp_apply.
Reviewed by Johan Commelin. Apr. 2022 (cit. on p. 171).

[mathlib#13489] Eric Wieser. feat(data/matrix/block): matrix.block_diagonal is a ring ho-
momorphism. Reviewed by Frédéric Dupuis. Apr. 2022 (cit. on p. 171).

[mathlib#13534] Eric Wieser. feat(topology/uniform_space/matrix): Add the uniform_space

structure on matrices. Reviewed by Oliver Nash. Apr. 2022 (cit. on p. 171).

[mathlib#13641] Eric Wieser. feat(topology/algebra/matrix): matrix.block_diagonal is con-
tinuous. Reviewed by Johan Commelin. Apr. 2022 (cit. on p. 171).

[mathlib#13815] Eric Wieser. chore(data/matrix/basic): add lemmas about powers of matrices.
Reviewed by Johan Commelin. Apr. 2022 (cit. on p. 171).

203

https://github.com/leanprover-community/mathlib/pull/13426
https://github.com/leanprover-community/mathlib/pull/13987
https://github.com/leanprover-community/mathlib/pull/9379
https://github.com/leanprover-community/mathlib/pull/13497
https://github.com/leanprover-community/mathlib/pull/13518
https://github.com/leanprover-community/mathlib4/pull/9476
https://github.com/leanprover-community/mathlib/pull/13544
https://github.com/leanprover-community/mathlib/pull/13520
https://github.com/leanprover-community/mathlib/pull/13402
https://github.com/leanprover-community/mathlib/pull/13488
https://github.com/leanprover-community/mathlib/pull/13489
https://github.com/leanprover-community/mathlib/pull/13534
https://github.com/leanprover-community/mathlib/pull/13641
https://github.com/leanprover-community/mathlib/pull/13815

Github references

[mathlib#13918] Eric Wieser. feat(data/matrix/block): add matrix.block_diag and matrix

.block_diag'. Reviewed by Johan Commelin. May 2022 (cit. on p. 171).

[mathlib#13938] Eric Wieser. chore(data/matrix/basic): add more lemmas about
conj_transpose and smul. Reviewed by Johan Commelin. May 2022 (cit. on
p. 171).

[mathlib#13970] Eric Wieser. feat(data/matrix/basic): even more lemmas about
conj_transpose and smul. Reviewed by Anne Baanen. May 2022 (cit. on
p. 171).

[mathlib#13971] Eric Wieser. chore(analysis/normed_space/exponential): replace 1/x with x⁻¹.
Reviewed by Yaël Dillies and Johan Commelin. May 2022 (cit. on p. 171).

[mathlib#18199] Eric Wieser. feat(algebra/triv_sq_zero_ext): lemmas about pow, and ring
structure. Reviewed by Anne Baanen. Jan. 2023 (cit. on p. 172).

[mathlib#19056] Eric Wieser. feat(analysis/calculus/fderiv/exp): derivative of exp ℝ (A x) in
non-commutative rings. Reviewed by Anatole Dedecker. May 2023 (cit. on
p. 172).

[mathlib4#9487] Eric Wieser. feat: the exponential of dual numbers over non-commutative
rings. Jan. 2024 (cit. on pp. 172, 174).

[mathlib#18200] Eric Wieser. feat(analysis/normed_space/triv_sq_zero_ext): exponential of
dual numbers. Reviewed by Jireh Loreaux, Damiano Testa, and Frédéric
Dupuis. Jan. 2023 (cit. on p. 173).

[mathlib#19049] Eric Wieser. feat(analysis/normed_space/triv_sq_zero_ext): generalize some
results to non-commutativity. Reviewed by Yaël Dillies and Scott Morrison.
May 2023 (cit. on p. 173).

[mathlib4#9491] Eric Wieser. feat(Analysis/NormedSpace/TrivSqZeroExt): generalize to topo-
logical spaces. Reviewed by Johan Commelin. Jan. 2024 (cit. on p. 173).

[mathlib4#9492] Eric Wieser. feat(Analysis/NormedSpace/TrivSqZeroExt): The L1 norm. Re-
viewed by Jireh Loreaux and Johan Commelin. Jan. 2024 (cit. on p. 173).

[mathlib#2339] Yury G. Kudryashov. feat(data/quaternion): define quaternions and prove
some basic properties. Reviewed by Johan Commelin, Bryan Gin-ge Chen,
Scott Morrison, Mario Carneiro, and Rob Lewis. Apr. 2020 (cit. on p. 174).

[mathlib#18347] Eric Wieser. feat(analysis/quaternion): add complete_space, module.free,
and module.finite instances. Reviewed by Yaël Dillies and Floris van Doorn.
Feb. 2023 (cit. on p. 174).

[mathlib#18352] Eric Wieser. feat(analysis/special_functions/trigonometric/series): express
cos/sin as infinite sums. Reviewed by Jireh Loreaux, Sébastien Gouëzel,
Joseph Myers, and Johan Commelin. Feb. 2023 (cit. on p. 174).

204

https://github.com/leanprover-community/mathlib/pull/13918
https://github.com/leanprover-community/mathlib/pull/13938
https://github.com/leanprover-community/mathlib/pull/13970
https://github.com/leanprover-community/mathlib/pull/13971
https://github.com/leanprover-community/mathlib/pull/18199
https://github.com/leanprover-community/mathlib/pull/19056
https://github.com/leanprover-community/mathlib4/pull/9487
https://github.com/leanprover-community/mathlib/pull/18200
https://github.com/leanprover-community/mathlib/pull/19049
https://github.com/leanprover-community/mathlib4/pull/9491
https://github.com/leanprover-community/mathlib4/pull/9492
https://github.com/leanprover-community/mathlib/pull/2339
https://github.com/leanprover-community/mathlib/pull/18347
https://github.com/leanprover-community/mathlib/pull/18352

Github references

[mathlib#18349] Eric Wieser. feat(analysis/normed_space/quaternion_exponential): lemmas
about the quaternion exponential. Reviewed by Yaël Dillies, Jireh Loreaux,
and Frédéric Dupuis. Feb. 2023 (cit. on p. 174).

[mathlib#18413] Eric Wieser. chore(algebra/quaternion): missing trivial lemmas. Reviewed by
Yaël Dillies and Oliver Nash. Feb. 2023 (cit. on p. 174).

[mathlib4#5678] Yury G. Kudryashov. feat: define continuous alternating maps. Reviewed by
Sébastien Gouëzel and Patrick Massot. July 2023 (cit. on p. 174).

[mathlib4#9718] Sophie Morel. feat(LinearAlgebra/{ExteriorAlgebra,CliffordAlgebra}): Func-
toriality of the exterior algebra and some lemmas about generation. Reviewed
by Eric Wieser and Matthew Robert Ballard. Jan. 2024 (cit. on p. 177).

[mathlib4#9474] Jireh Loreaux. feat: provide the `2 operator norm on matrices. Reviewed by
Eric Wieser. Jan. 2024 (cit. on p. 177).

[mathlib4#10079] Ali Ramsey. feat(RingTheory): hopf algebra definition. Reviewed by Eric
Wieser, Scott Morrison, and Kevin Buzzard. Jan. 2024 (cit. on p. 177).

[lean4#2451] Matthew Robert Ballard. RFC: tweak structure instance elaboration to avoid
un-needed eta expansion. Aug. 2023 (cit. on p. 179).

[lean4#2478] Matthew Robert Ballard. feat: use supplied structure fields left to right and
eta reduce terms in structure instance elaboration. Aug. 2023 (cit. on p. 179).

[lean4#2940] Eric Wieser. feat: Implement extends flat. Nov. 2023 (cit. on p. 179).

[lean4#2666] Eric Wieser. RFC: @[flat] annotation for names in the extend clause of a
structure. Oct. 2023 (cit. on p. 180).

https://github.com/leanprover-community/mathlib/pull/18349
https://github.com/leanprover-community/mathlib/pull/18413
https://github.com/leanprover-community/mathlib4/pull/5678
https://github.com/leanprover-community/mathlib4/pull/9718
https://github.com/leanprover-community/mathlib4/pull/9474
https://github.com/leanprover-community/mathlib4/pull/10079
https://github.com/leanprover/lean4/pull/2451
https://github.com/leanprover/lean4/pull/2478
https://github.com/leanprover/lean4/pull/2940
https://github.com/leanprover/lean4/pull/2666

	1 Introduction
	1.1 Structure of this thesis
	1.2 Connections with published work

	I Motivation
	2 Mathematical background
	2.1 Geometric algebra
	2.1.1 The wedge product
	2.1.2 The geometric product
	2.1.3 Transformations
	2.1.4 Further geometric expressiveness

	2.2 Clifford algebra
	2.2.1 Abstract algebra
	2.2.2 Notation
	2.2.3 Quadratic Forms
	2.2.4 The tensor algebra, 𝒯(V)
	2.2.5 A definition of 𝒢(V,Q)
	2.2.6 The exterior algebra, ⋀(V)

	3 Software
	3.1 Typing considerations
	3.2 Numeric
	3.2.1 Accelerator compatibility

	3.3 Symbolic
	3.3.1 Example: multivector derivatives
	3.3.2 Flexibility concerns
	3.3.3 Correctness issues

	3.4 Formal
	3.4.1 An introduction to the Lean theorem prover
	3.4.2 Revisiting the matrix examples
	3.4.3 Lean's mathematical library

	II Algebraic infrastructure
	4 Scalar actions
	4.1 Basic typeclasses
	4.2 Elementary actions
	4.2.1 Left multiplication
	4.2.2 Repeated addition and subtraction
	4.2.3 Application of endomorphisms and automorphisms

	4.3 Derived actions
	4.3.1 Function types, through their codomain
	4.3.2 Sets, through their elements
	4.3.3 Morphisms of additive groups, through their codomain
	4.3.4 Polynomials, through their coefficients
	4.3.5 Interactions with other actions

	4.4 Algebras and not-quite algebras
	4.5 Typeclass diamonds
	4.5.1 Non-commuting diamonds
	4.5.2 Definitional equality

	4.6 Conjugation, via type synonyms
	4.7 Right actions
	4.7.1 Bimodules
	4.7.2 Interaction with algebra
	4.7.3 Other compatibility concerns
	4.7.4 On functions, through their domains

	4.8 Lean 4's new HMul typeclass
	4.9 Alternatives to type synonyms
	4.10 Summary

	5 Extensionality
	5.1 Chaining extensionality lemmas
	5.2 Wider applications
	5.3 As a motivation for point-free statements
	5.4 Summary

	6 Graded rings
	6.1 Introduction
	6.2 Prior formalizations
	6.3 External gradings
	6.3.1 Graded semigroups
	6.3.2 Graded monoids
	6.3.3 Graded (semi)rings

	6.4 Internal gradings
	6.4.1 Decompositions of sets
	6.4.2 Graded monoids
	6.4.3 Decompositions of additive monoids and R-modules
	6.4.4 Graded (semi)rings

	6.5 Graded R-algebras
	6.6 Summary

	7 Multiple-inheritance hazards in dependently-typed algebraic hierarchies
	7.1 Introduction
	7.2 Types of structure inheritance
	7.2.1 Flat structures
	7.2.2 Nested structures

	7.3 Typeclasses depending on typeclasses
	7.3.1 Equality of typeclass arguments
	7.3.2 Inequality of typeclass arguments
	7.3.3 Impact of the inheritance strategy
	7.3.4 Other examples in mathlib

	7.4 Mitigation strategies
	7.4.1 Perform η-reduction of structures in the kernel
	7.4.2 Use "flat" inheritance
	7.4.3 Carefully select "preferred" paths
	7.4.4 Ban non-root structures in dependent arguments

	7.5 Implications for packed structures
	7.6 Related work
	7.7 Summary

	III Formalizations
	8 Universal properties as a computational tool
	8.1 Recursors
	8.2 The universal property of the Clifford Algebra
	8.2.1 Universal properties as recursors
	8.2.2 Universal properties as a universal interface
	8.2.3 Elementary GA operations via the universal property

	8.3 The universal property of the even subalgebra
	8.3.1 The isomorphism with the even subalgebra
	8.3.2 The isomorphism between even subalgebras of negated quadratic forms

	8.4 The isomorphism to the exterior algebra
	8.5 Formalization
	8.6 Summary

	9 Formalizing Clifford algebras
	9.1 Remarks on type theory
	9.2 Existing formalizations of geometric algebra
	9.2.1 Fixed-dimension representations
	9.2.2 Recursive tree representations
	9.2.3 Indexed coordinate representations

	9.3 The basics
	9.3.1 Construction via quotients
	9.3.2 Recovering the universal property
	9.3.3 Conjugations
	9.3.4 Induction
	9.3.5 The wedge product

	9.4 Versors
	9.5 Grade selection
	9.5.1 ℕ-grading
	9.5.2 ℤ₂-grading

	9.6 Constructing specific algebras
	9.7 Pathological cases
	9.7.1 Non-unique associated forms
	9.7.2 Non-existent associated forms, and injectivity of R → 𝒢(V,Q)

	9.8 Summary

	10 Isomorphisms
	10.1 Well-known isomorphisms
	10.1.1 Reals
	10.1.2 Complex numbers
	10.1.3 Dual numbers
	10.1.4 Quaternions
	10.1.5 Dual Quaternion

	10.2 Complexification
	10.2.1 Base change of quadratic forms
	10.2.2 Tensor products of quadratic forms
	10.2.3 Tensor products of bilinear forms
	10.2.4 Algebraic towers in tensor products
	10.2.5 Tensor products of algebras
	10.2.6 Base change of Clifford algebras

	10.3 Direct sums of quadratic vector spaces
	10.3.1 Direct sums of quadratic forms
	10.3.2 The tensor product of graded algebras
	10.3.3 Constructing the isomorphism

	10.4 Summary

	11 Further formalizations
	11.1 Alternating maps
	11.1.1 Products of alternating maps
	11.1.2 Further links with the exterior algebra

	11.2 Exponential operators
	11.2.1 Matrices
	11.2.2 Dual numbers
	11.2.3 Quaternions

	11.3 Summary

	12 Conclusions
	12.1 Key contributions
	12.2 Follow-up work
	12.3 Future directions
	12.3.1 Further changes to scalar actions
	12.3.2 Further development of graded algebraic objects
	12.3.3 Further comparison between flat and nested structures
	12.3.4 Syntactic support for universal properties
	12.3.5 Formalizing further elementary results about Clifford algebras
	12.3.6 Improvements to mathlib's calculus library

	12.4 Summary

	References
	Github references

