Inverse kinematics
		
		
		$$ \class{mj-blue}{\vec{P}}, \class{mj-darkgreen}{a}, \class{mj-green}{b} $$
		$$ \class{mj-blue}{\vec{P}}, \class{mj-darkgreen}{a}, \class{mj-green}{b}, \class{mj-red2}{\alpha}, \class{mj-orange2}{\beta} $$
		$$
		    \class{mj-blue}{\vec{P}}_x = \class{mj-darkgreen}{a} \cos \class{mj-red2}{\alpha} + \class{mj-green}{b} \cos \class{mj-orange2}{\beta}  \qquad
		    \class{mj-blue}{\vec{P}}_y = \class{mj-darkgreen}{a} \sin \class{mj-red2}{\alpha} + \class{mj-green}{b} \sin \class{mj-orange2}{\beta}
		$$
		
		
		
			$$
			\class{mj-red2}{\alpha} = \tan^{-1} \tfrac{\class{mj-blue}{\vec{P}}_y}{\class{mj-blue}{\vec{P}}_x}
			                        - \cos^{-1} \frac{
			                           \class{mj-darkgreen}{a}^2 +
			                           \lvert\class{mj-blue}{P}\rvert^2 -
			                           \class{mj-green}{b}^2
			                         }{
			                           2\class{mj-darkgreen}{a}\lvert\class{mj-blue}{P}\rvert
			                         }  \\
			\class{mj-orange2}{\beta} = \tan^{-1} \tfrac{\class{mj-blue}{\vec{P}}_y}{\class{mj-blue}{\vec{P}}_x}
			                          + \cos^{-1} \frac{\class{mj-green}{b}^2+\lvert\class{mj-blue}{P}\rvert^2-\class{mj-darkgreen}{a}^2}{2\class{mj-green}{b}\lvert\class{mj-blue}{P}\rvert}
			$$